Compare any two graphics cards:
VS

GeForce GTS 450 1GB vs Radeon HD 5870

Intro

The GeForce GTS 450 1GB has a clock frequency of 783 MHz and a GDDR5 memory speed of 902 MHz. It also makes use of a 128-bit memory bus, and uses a 40 nm design. It is made up of 192 SPUs, 32 TAUs, and 16 ROPs.

Compare those specs to the Radeon HD 5870, which features clock speeds of 850 MHz on the GPU, and 1200 MHz on the 1024 MB of GDDR5 RAM. It features 1600(320x5) SPUs along with 80 TAUs and 32 Rasterization Operator Units.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTS 450 1GB 106 Watts
Radeon HD 5870 188 Watts
Difference: 82 Watts (77%)

Memory Bandwidth

As far as performance goes, the Radeon HD 5870 should in theory be much superior to the GeForce GTS 450 1GB overall. (explain)

Radeon HD 5870 153600 MB/sec
GeForce GTS 450 1GB 57728 MB/sec
Difference: 95872 (166%)

Texel Rate

The Radeon HD 5870 will be a lot (approximately 171%) faster with regards to texture filtering than the GeForce GTS 450 1GB. (explain)

Radeon HD 5870 68000 Mtexels/sec
GeForce GTS 450 1GB 25056 Mtexels/sec
Difference: 42944 (171%)

Pixel Rate

The Radeon HD 5870 is a lot (approximately 117%) faster with regards to FSAA than the GeForce GTS 450 1GB, and should be able to handle higher screen resolutions without losing too much performance. (explain)

Radeon HD 5870 27200 Mpixels/sec
GeForce GTS 450 1GB 12528 Mpixels/sec
Difference: 14672 (117%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTS 450 1GB

Amazon.com

Radeon HD 5870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTS 450 1GB Radeon HD 5870
Manufacturer nVidia AMD
Year September 2010 September 23, 2009
Code Name GF106 Cypress XT
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe 2.1 x16
Memory 1024 MB 1024 MB
Core Speed 783 MHz 850 MHz
Shader Speed 1566 MHz (N/A) MHz
Memory Speed 3608 MHz 4800 MHz
Unified Shaders 192 1600(320x5)
Texture Mapping Units 32 80
Render Output Units 16 32
Bus Type GDDR5 GDDR5
Bus Width 128-bit 256-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 3.2
Power (Max TDP) 106 watts 188 watts
Shader Model 5.0 5.0
Bandwidth 57728 MB/sec 153600 MB/sec
Texel Rate 25056 Mtexels/sec 68000 Mtexels/sec
Pixel Rate 12528 Mpixels/sec 27200 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of data (counted in megabytes per second) that can be moved across the external memory interface in a second. It's worked out by multiplying the interface width by the speed of its memory. If the card has DDR memory, the result should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied per second. This figure is calculated by multiplying the total texture units by the core clock speed of the chip. The higher this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card could possibly record to its local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate is also dependant on lots of other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing