Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 6950 vs Radeon HD 7750

Intro

The Radeon HD 6950 has a clock speed of 800 MHz and a GDDR5 memory speed of 1250 MHz. It also uses a 256-bit bus, and uses a 40 nm design. It is made up of 1408 SPUs, 88 TAUs, and 32 ROPs.

Compare those specifications to the Radeon HD 7750, which makes use of a 28 nm design. AMD has set the core frequency at 800 MHz. The GDDR5 RAM runs at a frequency of 1125 MHz on this particular card. It features 512 SPUs as well as 32 Texture Address Units and 16 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7750 55 Watts
Radeon HD 6950 200 Watts
Difference: 145 Watts (264%)

Memory Bandwidth

The Radeon HD 6950 should in theory be quite a bit faster than the Radeon HD 7750 overall. (explain)

Radeon HD 6950 160000 MB/sec
Radeon HD 7750 72000 MB/sec
Difference: 88000 (122%)

Texel Rate

The Radeon HD 6950 will be quite a bit (approximately 175%) faster with regards to AF than the Radeon HD 7750. (explain)

Radeon HD 6950 70400 Mtexels/sec
Radeon HD 7750 25600 Mtexels/sec
Difference: 44800 (175%)

Pixel Rate

If using high levels of AA is important to you, then the Radeon HD 6950 is the winner, and very much so. (explain)

Radeon HD 6950 25600 Mpixels/sec
Radeon HD 7750 12800 Mpixels/sec
Difference: 12800 (100%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Radeon HD 6950

Amazon.com

Radeon HD 7750

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Radeon HD 6950 Radeon HD 7750
Manufacturer AMD AMD
Year December 2010 February 2012
Code Name Cayman Pro Cape Verde Pro
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1024 MB 1024 MB
Core Speed 800 MHz 800 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1250 MHz (5000 MHz effective) 1125 MHz (4500 MHz effective)
Unified Shaders 1408 512
Texture Mapping Units 88 32
Render Output Units 32 16
Bus Type GDDR5 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 4.1 OpenGL 4.2
Power (Max TDP) 200 watts 55 watts
Shader Model 5.0 5.0
Bandwidth 160000 MB/sec 72000 MB/sec
Texel Rate 70400 Mtexels/sec 25600 Mtexels/sec
Pixel Rate 25600 Mpixels/sec 12800 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of information (counted in MB per second) that can be transported across the external memory interface within a second. It's calculated by multiplying the card's bus width by its memory clock speed. If it uses DDR type memory, it should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed in one second. This figure is worked out by multiplying the total number of texture units by the core clock speed of the chip. The higher this number, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip could possibly record to the local memory in a second - measured in millions of pixels per second. The figure is worked out by multiplying the number of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on lots of other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree