Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 550 Ti vs Radeon HD 4850 512MB

Intro

The GeForce GTX 550 Ti makes use of a 40 nm design. nVidia has clocked the core speed at 900 MHz. The GDDR5 memory is set to run at a speed of 1026 MHz on this model. It features 192 SPUs as well as 32 TAUs and 24 Rasterization Operator Units.

Compare all that to the Radeon HD 4850 512MB, which makes use of a 55 nm design. AMD has set the core speed at 625 MHz. The GDDR3 memory works at a frequency of 993 MHz on this model. It features 800(160x5) SPUs as well as 40 Texture Address Units and 16 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 4850 512MB 110 Watts
GeForce GTX 550 Ti 116 Watts
Difference: 6 Watts (5%)

Memory Bandwidth

Theoretically, the GeForce GTX 550 Ti should be quite a bit faster than the Radeon HD 4850 512MB in general. (explain)

GeForce GTX 550 Ti 98496 MB/sec
Radeon HD 4850 512MB 63552 MB/sec
Difference: 34944 (55%)

Texel Rate

The GeForce GTX 550 Ti should be a small bit (about 15%) more effective at anisotropic filtering than the Radeon HD 4850 512MB. (explain)

GeForce GTX 550 Ti 28800 Mtexels/sec
Radeon HD 4850 512MB 25000 Mtexels/sec
Difference: 3800 (15%)

Pixel Rate

The GeForce GTX 550 Ti is quite a bit (about 116%) better at anti-aliasing than the Radeon HD 4850 512MB, and also will be capable of handling higher screen resolutions without losing too much performance. (explain)

GeForce GTX 550 Ti 21600 Mpixels/sec
Radeon HD 4850 512MB 10000 Mpixels/sec
Difference: 11600 (116%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 550 Ti

Amazon.com

Radeon HD 4850 512MB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 550 Ti Radeon HD 4850 512MB
Manufacturer nVidia AMD
Year March 2011 Jun 25, 2008
Code Name GF116 RV770 PRO
Fab Process 40 nm 55 nm
Bus PCIe 2.1 x16 PCIe 2.0 x16
Memory 1024 MB 512 MB
Core Speed 900 MHz 625 MHz
Shader Speed 1800 MHz (N/A) MHz
Memory Speed 1026 MHz (4104 MHz effective) 993 MHz (1986 MHz effective)
Unified Shaders 192 800(160x5)
Texture Mapping Units 32 40
Render Output Units 24 16
Bus Type GDDR5 GDDR3
Bus Width 192-bit 256-bit
DirectX Version DirectX 11 DirectX 10.1
OpenGL Version OpenGL 4.1 OpenGL 3.0
Power (Max TDP) 116 watts 110 watts
Shader Model 5.0 4.1
Bandwidth 98496 MB/sec 63552 MB/sec
Texel Rate 28800 Mtexels/sec 25000 Mtexels/sec
Pixel Rate 21600 Mpixels/sec 10000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (counted in MB per second) that can be moved across the external memory interface in one second. It's worked out by multiplying the card's bus width by its memory clock speed. In the case of DDR type RAM, the result should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the faster the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied in one second. This is worked out by multiplying the total texture units by the core speed of the chip. The better the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the most pixels that the graphics card could possibly record to the local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate also depends on many other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree