Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 550 Ti vs Radeon HD 4850 512MB

Intro

The GeForce GTX 550 Ti comes with a core clock speed of 900 MHz and a GDDR5 memory frequency of 1026 MHz. It also makes use of a 192-bit memory bus, and makes use of a 40 nm design. It is made up of 192 SPUs, 32 Texture Address Units, and 24 ROPs.

Compare all of that to the Radeon HD 4850 512MB, which features a core clock speed of 625 MHz and a GDDR3 memory speed of 993 MHz. It also features a 256-bit memory bus, and uses a 55 nm design. It is made up of 800(160x5) SPUs, 40 TAUs, and 16 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 4850 512MB 110 Watts
GeForce GTX 550 Ti 116 Watts
Difference: 6 Watts (5%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 550 Ti should perform quite a bit faster than the Radeon HD 4850 512MB overall. (explain)

GeForce GTX 550 Ti 98496 MB/sec
Radeon HD 4850 512MB 63552 MB/sec
Difference: 34944 (55%)

Texel Rate

The GeForce GTX 550 Ti should be a little bit (about 15%) better at texture filtering than the Radeon HD 4850 512MB. (explain)

GeForce GTX 550 Ti 28800 Mtexels/sec
Radeon HD 4850 512MB 25000 Mtexels/sec
Difference: 3800 (15%)

Pixel Rate

If running with a high screen resolution is important to you, then the GeForce GTX 550 Ti is the winner, by a large margin. (explain)

GeForce GTX 550 Ti 21600 Mpixels/sec
Radeon HD 4850 512MB 10000 Mpixels/sec
Difference: 11600 (116%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 550 Ti

Amazon.com

Radeon HD 4850 512MB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 550 Ti Radeon HD 4850 512MB
Manufacturer nVidia AMD
Year March 2011 Jun 25, 2008
Code Name GF116 RV770 PRO
Memory 1024 MB 512 MB
Core Speed 900 MHz 625 MHz
Memory Speed 4104 MHz 1986 MHz
Power (Max TDP) 116 watts 110 watts
Bandwidth 98496 MB/sec 63552 MB/sec
Texel Rate 28800 Mtexels/sec 25000 Mtexels/sec
Pixel Rate 21600 Mpixels/sec 10000 Mpixels/sec
Unified Shaders 192 800(160x5)
Texture Mapping Units 32 40
Render Output Units 24 16
Bus Type GDDR5 GDDR3
Bus Width 192-bit 256-bit
Fab Process 40 nm 55 nm
Transistors 1170 million 956 million
Bus PCIe 2.1 x16 PCIe 2.0 x16
DirectX Version DirectX 11 DirectX 10.1
OpenGL Version OpenGL 4.1 OpenGL 3.0

Memory Bandwidth: Memory bandwidth is the max amount of data (in units of MB per second) that can be transferred across the external memory interface within a second. It's worked out by multiplying the bus width by its memory speed. If it uses DDR type memory, it should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied in one second. This number is worked out by multiplying the total number of texture units of the card by the core speed of the chip. The higher the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip can possibly write to the local memory in a second - measured in millions of pixels per second. The number is worked out by multiplying the number of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate is also dependant on quite a few other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]