Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GT 430 1GB vs Radeon HD 5450

Intro

The GeForce GT 430 1GB comes with a core clock frequency of 700 MHz and a GDDR3 memory speed of 900 MHz. It also uses a 128-bit bus, and uses a 40 nm design. It features 96 SPUs, 16 Texture Address Units, and 4 Raster Operation Units.

Compare those specs to the Radeon HD 5450, which makes use of a 40 nm design. AMD has clocked the core speed at 650 MHz. The DDR3 RAM works at a speed of 800 MHz on this particular model. It features 80(16x5) SPUs along with 8 TAUs and 4 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5450 19 Watts
GeForce GT 430 1GB 60 Watts
Difference: 41 Watts (216%)

Memory Bandwidth

In theory, the GeForce GT 430 1GB will be 125% quicker than the Radeon HD 5450 in general, because of its higher data rate. (explain)

GeForce GT 430 1GB 28800 MB/sec
Radeon HD 5450 12800 MB/sec
Difference: 16000 (125%)

Texel Rate

The GeForce GT 430 1GB will be much (approximately 115%) better at anisotropic filtering than the Radeon HD 5450. (explain)

GeForce GT 430 1GB 11200 Mtexels/sec
Radeon HD 5450 5200 Mtexels/sec
Difference: 6000 (115%)

Pixel Rate

If using a high screen resolution is important to you, then the GeForce GT 430 1GB is the winner, but it probably won't make a huge difference. (explain)

GeForce GT 430 1GB 2800 Mpixels/sec
Radeon HD 5450 2600 Mpixels/sec
Difference: 200 (8%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 430 1GB

Amazon.com

Radeon HD 5450

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 430 1GB Radeon HD 5450
Manufacturer nVidia AMD
Year October 2010 February 4, 2010
Code Name GF108 Cedar PRO
Memory 1024 MB 512 MB
Core Speed 700 MHz 650 MHz
Memory Speed 1800 MHz 1600 MHz
Power (Max TDP) 60 watts 19 watts
Bandwidth 28800 MB/sec 12800 MB/sec
Texel Rate 11200 Mtexels/sec 5200 Mtexels/sec
Pixel Rate 2800 Mpixels/sec 2600 Mpixels/sec
Unified Shaders 96 80(16x5)
Texture Mapping Units 16 8
Render Output Units 4 4
Bus Type GDDR3 DDR3
Bus Width 128-bit 64-bit
Fab Process 40 nm 40 nm
Transistors 585 million 292 million
Bus PCIe x16 PCIe 2.1 x16
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 3.2

Memory Bandwidth: Bandwidth is the maximum amount of information (in units of megabytes per second) that can be moved over the external memory interface within a second. The number is calculated by multiplying the card's bus width by the speed of its memory. If the card has DDR type memory, it should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed per second. This is calculated by multiplying the total number of texture units of the card by the core clock speed of the chip. The higher this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip can possibly write to the local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the number of Render Output Units by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate also depends on quite a few other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]