Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 430 1GB vs Radeon HD 5450

Intro

The GeForce GT 430 1GB comes with a GPU core speed of 700 MHz, and the 1024 MB of GDDR3 RAM runs at 900 MHz through a 128-bit bus. It also is made up of 96 SPUs, 16 TAUs, and 4 Raster Operation Units.

Compare those specifications to the Radeon HD 5450, which makes use of a 40 nm design. AMD has clocked the core speed at 650 MHz. The DDR3 memory runs at a frequency of 800 MHz on this model. It features 80(16x5) SPUs as well as 8 TAUs and 4 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5450 19 Watts
GeForce GT 430 1GB 60 Watts
Difference: 41 Watts (216%)

Memory Bandwidth

The GeForce GT 430 1GB, in theory, should perform much faster than the Radeon HD 5450 in general. (explain)

GeForce GT 430 1GB 28800 MB/sec
Radeon HD 5450 12800 MB/sec
Difference: 16000 (125%)

Texel Rate

The GeForce GT 430 1GB should be quite a bit (more or less 115%) faster with regards to anisotropic filtering than the Radeon HD 5450. (explain)

GeForce GT 430 1GB 11200 Mtexels/sec
Radeon HD 5450 5200 Mtexels/sec
Difference: 6000 (115%)

Pixel Rate

The GeForce GT 430 1GB should be a small bit (about 8%) faster with regards to AA than the Radeon HD 5450, and will be able to handle higher resolutions better. (explain)

GeForce GT 430 1GB 2800 Mpixels/sec
Radeon HD 5450 2600 Mpixels/sec
Difference: 200 (8%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 430 1GB

Amazon.com

Radeon HD 5450

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 430 1GB Radeon HD 5450
Manufacturer nVidia AMD
Year October 2010 February 4, 2010
Code Name GF108 Cedar PRO
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe 2.1 x16
Memory 1024 MB 512 MB
Core Speed 700 MHz 650 MHz
Shader Speed 1400 MHz (N/A) MHz
Memory Speed 900 MHz (1800 MHz effective) 800 MHz (1600 MHz effective)
Unified Shaders 96 80(16x5)
Texture Mapping Units 16 8
Render Output Units 4 4
Bus Type GDDR3 DDR3
Bus Width 128-bit 64-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 3.2
Power (Max TDP) 60 watts 19 watts
Shader Model 5.0 5.0
Bandwidth 28800 MB/sec 12800 MB/sec
Texel Rate 11200 Mtexels/sec 5200 Mtexels/sec
Pixel Rate 2800 Mpixels/sec 2600 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (in units of MB per second) that can be transferred past the external memory interface in one second. The number is worked out by multiplying the interface width by its memory clock speed. In the case of DDR type RAM, it should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied per second. This figure is worked out by multiplying the total texture units by the core speed of the chip. The better the texel rate, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip could possibly record to the local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of Render Output Units by the clock speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate also depends on many other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree