Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce GT 420 vs Radeon HD 5450


The GeForce GT 420 has clock speeds of 700 MHz on the GPU, and 900 MHz on the 2048 MB of GDDR3 RAM. It features 48 SPUs along with 8 Texture Address Units and 4 ROPs.

Compare those specifications to the Radeon HD 5450, which features a GPU core clock speed of 650 MHz, and 512 MB of DDR3 RAM set to run at 800 MHz through a 64-bit bus. It also is made up of 80(16x5) Stream Processors, 8 Texture Address Units, and 4 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5450 19 Watts
GeForce GT 420 50 Watts
Difference: 31 Watts (163%)

Memory Bandwidth

The GeForce GT 420 should theoretically be much faster than the Radeon HD 5450 overall. (explain)

GeForce GT 420 28800 MB/sec
Radeon HD 5450 12800 MB/sec
Difference: 16000 (125%)

Texel Rate

The GeForce GT 420 should be a bit (about 8%) more effective at anisotropic filtering than the Radeon HD 5450. (explain)

GeForce GT 420 5600 Mtexels/sec
Radeon HD 5450 5200 Mtexels/sec
Difference: 400 (8%)

Pixel Rate

The GeForce GT 420 is a bit (about 8%) better at FSAA than the Radeon HD 5450, and will be able to handle higher resolutions more effectively. (explain)

GeForce GT 420 2800 Mpixels/sec
Radeon HD 5450 2600 Mpixels/sec
Difference: 200 (8%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 420

Radeon HD 5450

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce GT 420 Radeon HD 5450
Manufacturer nVidia AMD
Year September 2010 February 4, 2010
Code Name GF108 Cedar PRO
Memory 2048 MB 512 MB
Core Speed 700 MHz 650 MHz
Memory Speed 1800 MHz 1600 MHz
Power (Max TDP) 50 watts 19 watts
Bandwidth 28800 MB/sec 12800 MB/sec
Texel Rate 5600 Mtexels/sec 5200 Mtexels/sec
Pixel Rate 2800 Mpixels/sec 2600 Mpixels/sec
Unified Shaders 48 80(16x5)
Texture Mapping Units 8 8
Render Output Units 4 4
Bus Type GDDR3 DDR3
Bus Width 128-bit 64-bit
Fab Process 40 nm 40 nm
Transistors 585 million 292 million
Bus PCIe x16 PCIe 2.1 x16
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 3.2

Memory Bandwidth: Memory bandwidth is the maximum amount of information (in units of MB per second) that can be transported over the external memory interface in a second. The number is worked out by multiplying the bus width by its memory clock speed. If the card has DDR memory, the result should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied in one second. This figure is worked out by multiplying the total texture units by the core clock speed of the chip. The higher the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the most pixels the video card could possibly record to its local memory in one second - measured in millions of pixels per second. The number is worked out by multiplying the number of Raster Operations Pipelines by the clock speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on many other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the max fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield