Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

A Question

Compare any two graphics cards:
VS

GeForce GT 420 vs Radeon HD 5450

Intro

The GeForce GT 420 uses a 40 nm design. nVidia has clocked the core frequency at 700 MHz. The GDDR3 memory runs at a speed of 900 MHz on this card. It features 48 SPUs as well as 8 Texture Address Units and 4 Rasterization Operator Units.

Compare that to the Radeon HD 5450, which comes with a core clock frequency of 650 MHz and a DDR3 memory speed of 800 MHz. It also makes use of a 64-bit bus, and makes use of a 40 nm design. It is made up of 80(16x5) SPUs, 8 Texture Address Units, and 4 Raster Operation Units.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5450 19 Watts
GeForce GT 420 50 Watts
Difference: 31 Watts (163%)

Memory Bandwidth

Performance-wise, the GeForce GT 420 should theoretically be quite a bit superior to the Radeon HD 5450 overall. (explain)

GeForce GT 420 28800 MB/sec
Radeon HD 5450 12800 MB/sec
Difference: 16000 (125%)

Texel Rate

The GeForce GT 420 should be a bit (approximately 8%) better at anisotropic filtering than the Radeon HD 5450. (explain)

GeForce GT 420 5600 Mtexels/sec
Radeon HD 5450 5200 Mtexels/sec
Difference: 400 (8%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the GeForce GT 420 is the winner, but only just. (explain)

GeForce GT 420 2800 Mpixels/sec
Radeon HD 5450 2600 Mpixels/sec
Difference: 200 (8%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 420

Amazon.com

Radeon HD 5450

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 420 Radeon HD 5450
Manufacturer nVidia AMD
Year September 2010 February 4, 2010
Code Name GF108 Cedar PRO
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe 2.1 x16
Memory 2048 MB 512 MB
Core Speed 700 MHz 650 MHz
Shader Speed 1400 MHz (N/A) MHz
Memory Speed 1800 MHz 1600 MHz
Unified Shaders 48 80(16x5)
Texture Mapping Units 8 8
Render Output Units 4 4
Bus Type GDDR3 DDR3
Bus Width 128-bit 64-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 3.2
Power (Max TDP) 50 watts 19 watts
Shader Model 5.0 5.0
Bandwidth 28800 MB/sec 12800 MB/sec
Texel Rate 5600 Mtexels/sec 5200 Mtexels/sec
Pixel Rate 2800 Mpixels/sec 2600 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of data (in units of MB per second) that can be moved across the external memory interface in one second. It's worked out by multiplying the card's bus width by its memory clock speed. In the case of DDR type memory, it should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied in one second. This number is worked out by multiplying the total number of texture units of the card by the core clock speed of the chip. The better this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card can possibly record to the local memory in one second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate is also dependant on quite a few other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]