Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GT 220 GDDR3 vs GeForce GT 320

Intro

The GeForce GT 220 GDDR3 has a core clock frequency of 625 MHz and a GDDR3 memory frequency of 1012 MHz. It also uses a 128-bit bus, and uses a 40 nm design. It is comprised of 48 SPUs, 16 TAUs, and 8 ROPs.

Compare those specifications to the GeForce GT 320, which comes with GPU core speed of 540 MHz, and 1024 MB of GDDR3 RAM set to run at 790 MHz through a 128-bit bus. It also is made up of 72 Stream Processors, 24 TAUs, and 8 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 320 43 Watts
GeForce GT 220 GDDR3 58 Watts
Difference: 15 Watts (35%)

Memory Bandwidth

As far as performance goes, the GeForce GT 220 GDDR3 should in theory be a lot superior to the GeForce GT 320 in general. (explain)

GeForce GT 220 GDDR3 32384 MB/sec
GeForce GT 320 25280 MB/sec
Difference: 7104 (28%)

Texel Rate

The GeForce GT 320 is a lot (more or less 30%) more effective at AF than the GeForce GT 220 GDDR3. (explain)

GeForce GT 320 12960 Mtexels/sec
GeForce GT 220 GDDR3 10000 Mtexels/sec
Difference: 2960 (30%)

Pixel Rate

The GeForce GT 220 GDDR3 will be a little bit (approximately 16%) better at AA than the GeForce GT 320, and also able to handle higher screen resolutions without losing too much performance. (explain)

GeForce GT 220 GDDR3 5000 Mpixels/sec
GeForce GT 320 4320 Mpixels/sec
Difference: 680 (16%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 220 GDDR3

Amazon.com

GeForce GT 320

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 220 GDDR3 GeForce GT 320
Manufacturer nVidia nVidia
Year October 2009 February 2010
Code Name GT216 GT215
Memory 512 MB 1024 MB
Core Speed 625 MHz 540 MHz
Memory Speed 2024 MHz 1580 MHz
Power (Max TDP) 58 watts 43 watts
Bandwidth 32384 MB/sec 25280 MB/sec
Texel Rate 10000 Mtexels/sec 12960 Mtexels/sec
Pixel Rate 5000 Mpixels/sec 4320 Mpixels/sec
Unified Shaders 48 72
Texture Mapping Units 16 24
Render Output Units 8 8
Bus Type GDDR3 GDDR3
Bus Width 128-bit 128-bit
Fab Process 40 nm 40 nm
Transistors 486 million 727 million
Bus PCIe 2.0 PCIe x16
DirectX Version DirectX 10.1 DirectX 10.1
OpenGL Version OpenGL 3.2 OpenGL 3.3

Memory Bandwidth: Bandwidth is the max amount of data (counted in megabytes per second) that can be moved over the external memory interface in a second. It's worked out by multiplying the card's bus width by the speed of its memory. If it uses DDR type RAM, the result should be multiplied by 2 again. If DDR5, multiply by 4 instead. The better the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be processed in one second. This figure is worked out by multiplying the total texture units by the core speed of the chip. The higher the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card could possibly record to the local memory in a second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate also depends on quite a few other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]