Compare any two graphics cards:
VS

GeForce GT 220 GDDR3 vs GeForce GT 320

Intro

The GeForce GT 220 GDDR3 features a clock frequency of 625 MHz and a GDDR3 memory speed of 1012 MHz. It also makes use of a 128-bit memory bus, and makes use of a 40 nm design. It is comprised of 48 SPUs, 16 TAUs, and 8 ROPs.

Compare all that to the GeForce GT 320, which has GPU clock speed of 540 MHz, and 1024 MB of GDDR3 RAM running at 790 MHz through a 128-bit bus. It also is comprised of 72 SPUs, 24 TAUs, and 8 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 320 43 Watts
GeForce GT 220 GDDR3 58 Watts
Difference: 15 Watts (35%)

Memory Bandwidth

Theoretically, the GeForce GT 220 GDDR3 should perform a lot faster than the GeForce GT 320 overall. (explain)

GeForce GT 220 GDDR3 32384 MB/sec
GeForce GT 320 25280 MB/sec
Difference: 7104 (28%)

Texel Rate

The GeForce GT 320 should be a lot (approximately 30%) faster with regards to anisotropic filtering than the GeForce GT 220 GDDR3. (explain)

GeForce GT 320 12960 Mtexels/sec
GeForce GT 220 GDDR3 10000 Mtexels/sec
Difference: 2960 (30%)

Pixel Rate

The GeForce GT 220 GDDR3 will be just a bit (more or less 16%) faster with regards to AA than the GeForce GT 320, and will be capable of handling higher screen resolutions better. (explain)

GeForce GT 220 GDDR3 5000 Mpixels/sec
GeForce GT 320 4320 Mpixels/sec
Difference: 680 (16%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 220 GDDR3

Amazon.com

GeForce GT 320

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 220 GDDR3 GeForce GT 320
Manufacturer nVidia nVidia
Year October 2009 February 2010
Code Name GT216 GT215
Fab Process 40 nm 40 nm
Bus PCIe 2.0 PCIe x16
Memory 512 MB 1024 MB
Core Speed 625 MHz 540 MHz
Shader Speed 1360 MHz 1302 MHz
Memory Speed 2024 MHz 1580 MHz
Unified Shaders 48 72
Texture Mapping Units 16 24
Render Output Units 8 8
Bus Type GDDR3 GDDR3
Bus Width 128-bit 128-bit
DirectX Version DirectX 10.1 DirectX 10.1
OpenGL Version OpenGL 3.2 OpenGL 3.3
Power (Max TDP) 58 watts 43 watts
Shader Model 4.1 4.1
Bandwidth 32384 MB/sec 25280 MB/sec
Texel Rate 10000 Mtexels/sec 12960 Mtexels/sec
Pixel Rate 5000 Mpixels/sec 4320 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of information (counted in megabytes per second) that can be transported over the external memory interface in a second. It's calculated by multiplying the card's bus width by its memory clock speed. In the case of DDR memory, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied per second. This is calculated by multiplying the total texture units of the card by the core clock speed of the chip. The higher this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the most pixels the graphics card can possibly write to its local memory in a second - measured in millions of pixels per second. The number is worked out by multiplying the amount of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate also depends on lots of other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing