Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GT 220 GDDR3 vs GeForce GT 320

Intro

The GeForce GT 220 GDDR3 uses a 40 nm design. nVidia has set the core speed at 625 MHz. The GDDR3 RAM is set to run at a speed of 1012 MHz on this particular card. It features 48 SPUs along with 16 Texture Address Units and 8 Rasterization Operator Units.

Compare that to the GeForce GT 320, which features a core clock speed of 540 MHz and a GDDR3 memory frequency of 790 MHz. It also uses a 128-bit bus, and makes use of a 40 nm design. It features 72 SPUs, 24 Texture Address Units, and 8 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 320 43 Watts
GeForce GT 220 GDDR3 58 Watts
Difference: 15 Watts (35%)

Memory Bandwidth

The GeForce GT 220 GDDR3 should theoretically be quite a bit faster than the GeForce GT 320 in general. (explain)

GeForce GT 220 GDDR3 32384 MB/sec
GeForce GT 320 25280 MB/sec
Difference: 7104 (28%)

Texel Rate

The GeForce GT 320 is a lot (more or less 30%) faster with regards to anisotropic filtering than the GeForce GT 220 GDDR3. (explain)

GeForce GT 320 12960 Mtexels/sec
GeForce GT 220 GDDR3 10000 Mtexels/sec
Difference: 2960 (30%)

Pixel Rate

If running with high levels of AA is important to you, then the GeForce GT 220 GDDR3 is superior to the GeForce GT 320, not by a very large margin though. (explain)

GeForce GT 220 GDDR3 5000 Mpixels/sec
GeForce GT 320 4320 Mpixels/sec
Difference: 680 (16%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 220 GDDR3

Amazon.com

GeForce GT 320

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 220 GDDR3 GeForce GT 320
Manufacturer nVidia nVidia
Year October 2009 February 2010
Code Name GT216 GT215
Memory 512 MB 1024 MB
Core Speed 625 MHz 540 MHz
Memory Speed 2024 MHz 1580 MHz
Power (Max TDP) 58 watts 43 watts
Bandwidth 32384 MB/sec 25280 MB/sec
Texel Rate 10000 Mtexels/sec 12960 Mtexels/sec
Pixel Rate 5000 Mpixels/sec 4320 Mpixels/sec
Unified Shaders 48 72
Texture Mapping Units 16 24
Render Output Units 8 8
Bus Type GDDR3 GDDR3
Bus Width 128-bit 128-bit
Fab Process 40 nm 40 nm
Transistors 486 million 727 million
Bus PCIe 2.0 PCIe x16
DirectX Version DirectX 10.1 DirectX 10.1
OpenGL Version OpenGL 3.2 OpenGL 3.3

Memory Bandwidth: Memory bandwidth is the max amount of information (in units of megabytes per second) that can be moved past the external memory interface within a second. The number is calculated by multiplying the card's interface width by its memory speed. If it uses DDR memory, it should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the bandwidth is, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied per second. This figure is worked out by multiplying the total number of texture units of the card by the core clock speed of the chip. The better the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card could possibly record to its local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of Raster Operations Pipelines by the the core clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate is also dependant on quite a few other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]