Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 5830 vs Radeon HD 6850

Intro

The Radeon HD 5830 has a clock frequency of 800 MHz and a GDDR5 memory speed of 1000 MHz. It also makes use of a 256-bit bus, and makes use of a 40 nm design. It is made up of 1120(224x5) SPUs, 56 Texture Address Units, and 16 Raster Operation Units.

Compare those specs to the Radeon HD 6850, which makes use of a 40 nm design. AMD has set the core speed at 775 MHz. The GDDR5 RAM runs at a speed of 1000 MHz on this card. It features 960 SPUs along with 48 TAUs and 32 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6850 127 Watts
Radeon HD 5830 175 Watts
Difference: 48 Watts (38%)

Memory Bandwidth

Both cards have exactly the same memory bandwidth, so in theory they should perform the same. (explain)

Texel Rate

The Radeon HD 5830 should be a bit (approximately 20%) more effective at AF than the Radeon HD 6850. (explain)

Radeon HD 5830 44800 Mtexels/sec
Radeon HD 6850 37200 Mtexels/sec
Difference: 7600 (20%)

Pixel Rate

The Radeon HD 6850 should be a lot (about 94%) better at AA than the Radeon HD 5830, and capable of handling higher resolutions without losing too much performance. (explain)

Radeon HD 6850 24800 Mpixels/sec
Radeon HD 5830 12800 Mpixels/sec
Difference: 12000 (94%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Radeon HD 5830

Amazon.com

Radeon HD 6850

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Radeon HD 5830 Radeon HD 6850
Manufacturer AMD AMD
Year February 25, 2010 October 2010
Code Name Cypress LE Barts Pro
Fab Process 40 nm 40 nm
Bus PCIe 2.1 x16 PCIe x16
Memory 1024 MB 1024 MB
Core Speed 800 MHz 775 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 1000 MHz (4000 MHz effective) 1000 MHz (4000 MHz effective)
Unified Shaders 1120(224x5) 960
Texture Mapping Units 56 48
Render Output Units 16 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 3.2 OpenGL 4.1
Power (Max TDP) 175 watts 127 watts
Shader Model 5.0 5.0
Bandwidth 128000 MB/sec 128000 MB/sec
Texel Rate 44800 Mtexels/sec 37200 Mtexels/sec
Pixel Rate 12800 Mpixels/sec 24800 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of information (measured in MB per second) that can be transported over the external memory interface in a second. It is worked out by multiplying the card's bus width by the speed of its memory. If it uses DDR type memory, it should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the faster the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed per second. This is calculated by multiplying the total amount of texture units of the card by the core clock speed of the chip. The better the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card can possibly record to the local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of Render Output Units by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate also depends on lots of other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing