Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 560 Ti vs GeForce GTX 650 Ti

Intro

The GeForce GTX 560 Ti features a core clock frequency of 822 MHz and a GDDR5 memory speed of 1002 MHz. It also uses a 256-bit memory bus, and makes use of a 40 nm design. It is made up of 384 SPUs, 64 TAUs, and 32 Raster Operation Units.

Compare those specs to the GeForce GTX 650 Ti, which features a GPU core clock speed of 928 MHz, and 1024 MB of GDDR5 RAM set to run at 1350 MHz through a 128-bit bus. It also features 768 Stream Processors, 64 Texture Address Units, and 16 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 Ti 110 Watts
GeForce GTX 560 Ti 170 Watts
Difference: 60 Watts (55%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 560 Ti should be 48% quicker than the GeForce GTX 650 Ti overall, due to its greater data rate. (explain)

GeForce GTX 560 Ti 128256 MB/sec
GeForce GTX 650 Ti 86400 MB/sec
Difference: 41856 (48%)

Texel Rate

The GeForce GTX 650 Ti should be a little bit (more or less 13%) more effective at AF than the GeForce GTX 560 Ti. (explain)

GeForce GTX 650 Ti 59392 Mtexels/sec
GeForce GTX 560 Ti 52608 Mtexels/sec
Difference: 6784 (13%)

Pixel Rate

The GeForce GTX 560 Ti will be a lot (more or less 77%) faster with regards to anti-aliasing than the GeForce GTX 650 Ti, and also capable of handling higher screen resolutions more effectively. (explain)

GeForce GTX 560 Ti 26304 Mpixels/sec
GeForce GTX 650 Ti 14848 Mpixels/sec
Difference: 11456 (77%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 560 Ti

Amazon.com

GeForce GTX 650 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 560 Ti GeForce GTX 650 Ti
Manufacturer nVidia nVidia
Year January 2011 October 2012
Code Name GF114 GK106
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1024 MB 1024 MB
Core Speed 822 MHz 928 MHz
Shader Speed 1645 MHz 928 MHz
Memory Speed 1002 MHz (4008 MHz effective) 1350 MHz (5400 MHz effective)
Unified Shaders 384 768
Texture Mapping Units 64 64
Render Output Units 32 16
Bus Type GDDR5 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3
Power (Max TDP) 170 watts 110 watts
Shader Model 5.0 5.0
Bandwidth 128256 MB/sec 86400 MB/sec
Texel Rate 52608 Mtexels/sec 59392 Mtexels/sec
Pixel Rate 26304 Mpixels/sec 14848 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of data (in units of megabytes per second) that can be moved across the external memory interface in a second. It is calculated by multiplying the card's interface width by its memory clock speed. If it uses DDR type memory, it must be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed in one second. This number is calculated by multiplying the total number of texture units of the card by the core speed of the chip. The higher the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the most pixels that the graphics card can possibly write to the local memory in one second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of Render Output Units by the the core clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate is also dependant on quite a few other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing