Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

A Question

Compare any two graphics cards:
VS

GeForce GTX 560 Ti vs GeForce GTX 650 Ti

Intro

The GeForce GTX 560 Ti makes use of a 40 nm design. nVidia has clocked the core speed at 822 MHz. The GDDR5 RAM runs at a speed of 1002 MHz on this specific model. It features 384 SPUs along with 64 Texture Address Units and 32 Rasterization Operator Units.

Compare that to the GeForce GTX 650 Ti, which comes with core speeds of 928 MHz on the GPU, and 1350 MHz on the 1024 MB of GDDR5 memory. It features 768 SPUs along with 64 TAUs and 16 Rasterization Operator Units.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 Ti 110 Watts
GeForce GTX 560 Ti 170 Watts
Difference: 60 Watts (55%)

Memory Bandwidth

In theory, the GeForce GTX 560 Ti is 48% faster than the GeForce GTX 650 Ti overall, due to its higher data rate. (explain)

GeForce GTX 560 Ti 128256 MB/sec
GeForce GTX 650 Ti 86400 MB/sec
Difference: 41856 (48%)

Texel Rate

The GeForce GTX 650 Ti is a little bit (about 13%) faster with regards to AF than the GeForce GTX 560 Ti. (explain)

GeForce GTX 650 Ti 59392 Mtexels/sec
GeForce GTX 560 Ti 52608 Mtexels/sec
Difference: 6784 (13%)

Pixel Rate

The GeForce GTX 560 Ti will be much (more or less 77%) better at full screen anti-aliasing than the GeForce GTX 650 Ti, and also should be able to handle higher screen resolutions while still performing well. (explain)

GeForce GTX 560 Ti 26304 Mpixels/sec
GeForce GTX 650 Ti 14848 Mpixels/sec
Difference: 11456 (77%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 560 Ti

Amazon.com

GeForce GTX 650 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 560 Ti GeForce GTX 650 Ti
Manufacturer nVidia nVidia
Year January 2011 October 2012
Code Name GF114 GK106
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1024 MB 1024 MB
Core Speed 822 MHz 928 MHz
Shader Speed 1645 MHz 928 MHz
Memory Speed 4008 MHz 5400 MHz
Unified Shaders 384 768
Texture Mapping Units 64 64
Render Output Units 32 16
Bus Type GDDR5 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3
Power (Max TDP) 170 watts 110 watts
Shader Model 5.0 5.0
Bandwidth 128256 MB/sec 86400 MB/sec
Texel Rate 52608 Mtexels/sec 59392 Mtexels/sec
Pixel Rate 26304 Mpixels/sec 14848 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of information (in units of megabytes per second) that can be transferred past the external memory interface within a second. It is worked out by multiplying the interface width by the speed of its memory. If it uses DDR memory, the result should be multiplied by 2 again. If DDR5, multiply by 4 instead. The higher the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied per second. This is calculated by multiplying the total texture units of the card by the core clock speed of the chip. The higher this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the most pixels the graphics card can possibly write to the local memory in a second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on many other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]