Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 560 Ti vs GeForce GTX 650 Ti

Intro

The GeForce GTX 560 Ti comes with a clock speed of 822 MHz and a GDDR5 memory frequency of 1002 MHz. It also features a 256-bit bus, and makes use of a 40 nm design. It is comprised of 384 SPUs, 64 Texture Address Units, and 32 ROPs.

Compare those specs to the GeForce GTX 650 Ti, which comes with clock speeds of 928 MHz on the GPU, and 1350 MHz on the 1024 MB of GDDR5 RAM. It features 768 SPUs as well as 64 TAUs and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 Ti 110 Watts
GeForce GTX 560 Ti 170 Watts
Difference: 60 Watts (55%)

Memory Bandwidth

The GeForce GTX 560 Ti, in theory, should be quite a bit faster than the GeForce GTX 650 Ti overall. (explain)

GeForce GTX 560 Ti 128256 MB/sec
GeForce GTX 650 Ti 86400 MB/sec
Difference: 41856 (48%)

Texel Rate

The GeForce GTX 650 Ti is a bit (approximately 13%) more effective at texture filtering than the GeForce GTX 560 Ti. (explain)

GeForce GTX 650 Ti 59392 Mtexels/sec
GeForce GTX 560 Ti 52608 Mtexels/sec
Difference: 6784 (13%)

Pixel Rate

If running with high levels of AA is important to you, then the GeForce GTX 560 Ti is superior to the GeForce GTX 650 Ti, and very much so. (explain)

GeForce GTX 560 Ti 26304 Mpixels/sec
GeForce GTX 650 Ti 14848 Mpixels/sec
Difference: 11456 (77%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 560 Ti

Amazon.com

GeForce GTX 650 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 560 Ti GeForce GTX 650 Ti
Manufacturer nVidia nVidia
Year January 2011 October 2012
Code Name GF114 GK106
Memory 1024 MB 1024 MB
Core Speed 822 MHz 928 MHz
Memory Speed 4008 MHz 5400 MHz
Power (Max TDP) 170 watts 110 watts
Bandwidth 128256 MB/sec 86400 MB/sec
Texel Rate 52608 Mtexels/sec 59392 Mtexels/sec
Pixel Rate 26304 Mpixels/sec 14848 Mpixels/sec
Unified Shaders 384 768
Texture Mapping Units 64 64
Render Output Units 32 16
Bus Type GDDR5 GDDR5
Bus Width 256-bit 128-bit
Fab Process 40 nm 28 nm
Transistors 1950 million 2540 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3

Memory Bandwidth: Bandwidth is the max amount of data (measured in MB per second) that can be moved across the external memory interface in a second. The number is calculated by multiplying the card's interface width by its memory speed. In the case of DDR memory, it should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed in one second. This number is calculated by multiplying the total number of texture units of the card by the core clock speed of the chip. The better the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip can possibly record to its local memory per second - measured in millions of pixels per second. The number is worked out by multiplying the number of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on quite a few other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]