Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 650 Ti vs Radeon HD 7870

Intro

The GeForce GTX 650 Ti uses a 28 nm design. nVidia has set the core frequency at 928 MHz. The GDDR5 RAM runs at a speed of 1350 MHz on this specific model. It features 768 SPUs along with 64 TAUs and 16 Rasterization Operator Units.

Compare that to the Radeon HD 7870, which has a core clock speed of 1000 MHz and a GDDR5 memory frequency of 1200 MHz. It also features a 256-bit bus, and uses a 28 nm design. It is made up of 1280 SPUs, 80 TAUs, and 32 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 Ti 110 Watts
Radeon HD 7870 175 Watts
Difference: 65 Watts (59%)

Memory Bandwidth

In theory, the Radeon HD 7870 will be 78% quicker than the GeForce GTX 650 Ti in general, due to its greater bandwidth. (explain)

Radeon HD 7870 153600 MB/sec
GeForce GTX 650 Ti 86400 MB/sec
Difference: 67200 (78%)

Texel Rate

The Radeon HD 7870 is quite a bit (approximately 35%) better at AF than the GeForce GTX 650 Ti. (explain)

Radeon HD 7870 80000 Mtexels/sec
GeForce GTX 650 Ti 59392 Mtexels/sec
Difference: 20608 (35%)

Pixel Rate

The Radeon HD 7870 is quite a bit (approximately 116%) more effective at full screen anti-aliasing than the GeForce GTX 650 Ti, and also will be capable of handling higher resolutions without slowing down too much. (explain)

Radeon HD 7870 32000 Mpixels/sec
GeForce GTX 650 Ti 14848 Mpixels/sec
Difference: 17152 (116%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 650 Ti

Amazon.com

Radeon HD 7870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 650 Ti Radeon HD 7870
Manufacturer nVidia AMD
Year October 2012 March 2012
Code Name GK106 Pitcairn XT
Memory 1024 MB 2048 MB
Core Speed 928 MHz 1000 MHz
Memory Speed 5400 MHz 4800 MHz
Power (Max TDP) 110 watts 175 watts
Bandwidth 86400 MB/sec 153600 MB/sec
Texel Rate 59392 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 14848 Mpixels/sec 32000 Mpixels/sec
Unified Shaders 768 1280
Texture Mapping Units 64 80
Render Output Units 16 32
Bus Type GDDR5 GDDR5
Bus Width 128-bit 256-bit
Fab Process 28 nm 28 nm
Transistors 2540 million 2800 million
Bus PCIe 3.0 x16 PCIe 3.0 x16
DirectX Version DirectX 11.0 DirectX 11.1
OpenGL Version OpenGL 4.3 OpenGL 4.2

Memory Bandwidth: Bandwidth is the maximum amount of information (measured in megabytes per second) that can be transferred across the external memory interface in one second. It is calculated by multiplying the interface width by its memory clock speed. In the case of DDR type RAM, the result should be multiplied by 2 again. If DDR5, multiply by 4 instead. The better the bandwidth is, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed per second. This is calculated by multiplying the total number of texture units by the core clock speed of the chip. The higher this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip can possibly write to its local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate also depends on lots of other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]