Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 650 Ti vs Radeon HD 7870

Intro

The GeForce GTX 650 Ti has a GPU core clock speed of 928 MHz, and the 1024 MB of GDDR5 memory is set to run at 1350 MHz through a 128-bit bus. It also is made up of 768 Stream Processors, 64 TAUs, and 16 Raster Operation Units.

Compare those specifications to the Radeon HD 7870, which has a clock speed of 1000 MHz and a GDDR5 memory frequency of 1200 MHz. It also makes use of a 256-bit memory bus, and makes use of a 28 nm design. It is comprised of 1280 SPUs, 80 Texture Address Units, and 32 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 Ti 110 Watts
Radeon HD 7870 175 Watts
Difference: 65 Watts (59%)

Memory Bandwidth

The Radeon HD 7870 should theoretically be quite a bit faster than the GeForce GTX 650 Ti in general. (explain)

Radeon HD 7870 153600 MB/sec
GeForce GTX 650 Ti 86400 MB/sec
Difference: 67200 (78%)

Texel Rate

The Radeon HD 7870 should be quite a bit (about 35%) better at AF than the GeForce GTX 650 Ti. (explain)

Radeon HD 7870 80000 Mtexels/sec
GeForce GTX 650 Ti 59392 Mtexels/sec
Difference: 20608 (35%)

Pixel Rate

The Radeon HD 7870 should be much (about 116%) better at FSAA than the GeForce GTX 650 Ti, and will be able to handle higher screen resolutions more effectively. (explain)

Radeon HD 7870 32000 Mpixels/sec
GeForce GTX 650 Ti 14848 Mpixels/sec
Difference: 17152 (116%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 650 Ti

Amazon.com

Radeon HD 7870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 650 Ti Radeon HD 7870
Manufacturer nVidia AMD
Year October 2012 March 2012
Code Name GK106 Pitcairn XT
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 928 MHz 1000 MHz
Shader Speed 928 MHz (N/A) MHz
Memory Speed 1350 MHz (5400 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 768 1280
Texture Mapping Units 64 80
Render Output Units 16 32
Bus Type GDDR5 GDDR5
Bus Width 128-bit 256-bit
DirectX Version DirectX 11.0 DirectX 11.1
OpenGL Version OpenGL 4.3 OpenGL 4.2
Power (Max TDP) 110 watts 175 watts
Shader Model 5.0 5.0
Bandwidth 86400 MB/sec 153600 MB/sec
Texel Rate 59392 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 14848 Mpixels/sec 32000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of data (counted in megabytes per second) that can be transferred over the external memory interface within a second. It's worked out by multiplying the card's bus width by its memory speed. If the card has DDR type RAM, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed in one second. This number is worked out by multiplying the total texture units by the core speed of the chip. The higher this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card can possibly record to its local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate also depends on many other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing