Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 650 Ti vs Radeon HD 7870

Intro

The GeForce GTX 650 Ti uses a 28 nm design. nVidia has set the core speed at 928 MHz. The GDDR5 RAM is set to run at a frequency of 1350 MHz on this particular card. It features 768 SPUs along with 64 TAUs and 16 ROPs.

Compare those specs to the Radeon HD 7870, which comes with a core clock frequency of 1000 MHz and a GDDR5 memory speed of 1200 MHz. It also uses a 256-bit bus, and makes use of a 28 nm design. It is comprised of 1280 SPUs, 80 Texture Address Units, and 32 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 Ti 110 Watts
Radeon HD 7870 175 Watts
Difference: 65 Watts (59%)

Memory Bandwidth

Theoretically speaking, the Radeon HD 7870 should be a lot faster than the GeForce GTX 650 Ti overall. (explain)

Radeon HD 7870 153600 MB/sec
GeForce GTX 650 Ti 86400 MB/sec
Difference: 67200 (78%)

Texel Rate

The Radeon HD 7870 is a lot (more or less 35%) faster with regards to anisotropic filtering than the GeForce GTX 650 Ti. (explain)

Radeon HD 7870 80000 Mtexels/sec
GeForce GTX 650 Ti 59392 Mtexels/sec
Difference: 20608 (35%)

Pixel Rate

If running with high levels of AA is important to you, then the Radeon HD 7870 is the winner, by far. (explain)

Radeon HD 7870 32000 Mpixels/sec
GeForce GTX 650 Ti 14848 Mpixels/sec
Difference: 17152 (116%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

GeForce GTX 650 Ti

Amazon.com

Other US-based stores

Radeon HD 7870

Amazon.com

Other US-based stores

Specifications

Model GeForce GTX 650 Ti Radeon HD 7870
Manufacturer nVidia ATi
Year October 2012 March 2012
Code Name GK106 Pitcairn XT
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 928 MHz 1000 MHz
Shader Speed 928 MHz (N/A) MHz
Memory Speed 1350 MHz (5400 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 768 1280
Texture Mapping Units 64 80
Render Output Units 16 32
Bus Type GDDR5 GDDR5
Bus Width 128-bit 256-bit
DirectX Version DirectX 11.1 DirectX 11.1
OpenGL Version OpenGL 4.3 OpenGL 4.2
Power (Max TDP) 110 watts 175 watts
Shader Model 5.0 5.0
Bandwidth 86400 MB/sec 153600 MB/sec
Texel Rate 59392 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 14848 Mpixels/sec 32000 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of information (in units of MB per second) that can be transported past the external memory interface in one second. It's worked out by multiplying the card's interface width by its memory clock speed. If the card has DDR memory, it should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The higher the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied in one second. This number is worked out by multiplying the total texture units of the card by the core speed of the chip. The better this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the most pixels that the graphics card can possibly write to its local memory in a second - measured in millions of pixels per second. The number is worked out by multiplying the number of Render Output Units by the clock speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on lots of other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree