Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 650 Ti vs Radeon HD 7870

Intro

The GeForce GTX 650 Ti comes with a GPU core speed of 928 MHz, and the 1024 MB of GDDR5 RAM is set to run at 1350 MHz through a 128-bit bus. It also is made up of 768 SPUs, 64 Texture Address Units, and 16 Raster Operation Units.

Compare all that to the Radeon HD 7870, which has clock speeds of 1000 MHz on the GPU, and 1200 MHz on the 2048 MB of GDDR5 RAM. It features 1280 SPUs along with 80 TAUs and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 Ti 110 Watts
Radeon HD 7870 175 Watts
Difference: 65 Watts (59%)

Memory Bandwidth

Performance-wise, the Radeon HD 7870 should theoretically be much better than the GeForce GTX 650 Ti overall. (explain)

Radeon HD 7870 153600 MB/sec
GeForce GTX 650 Ti 86400 MB/sec
Difference: 67200 (78%)

Texel Rate

The Radeon HD 7870 should be much (more or less 35%) faster with regards to texture filtering than the GeForce GTX 650 Ti. (explain)

Radeon HD 7870 80000 Mtexels/sec
GeForce GTX 650 Ti 59392 Mtexels/sec
Difference: 20608 (35%)

Pixel Rate

If running with a high resolution is important to you, then the Radeon HD 7870 is the winner, by a large margin. (explain)

Radeon HD 7870 32000 Mpixels/sec
GeForce GTX 650 Ti 14848 Mpixels/sec
Difference: 17152 (116%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

GeForce GTX 650 Ti

Amazon.com

Other US-based stores

Radeon HD 7870

Amazon.com

Other US-based stores

Specifications

Model GeForce GTX 650 Ti Radeon HD 7870
Manufacturer nVidia ATi
Year October 2012 March 2012
Code Name GK106 Pitcairn XT
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 928 MHz 1000 MHz
Shader Speed 928 MHz (N/A) MHz
Memory Speed 1350 MHz (5400 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 768 1280
Texture Mapping Units 64 80
Render Output Units 16 32
Bus Type GDDR5 GDDR5
Bus Width 128-bit 256-bit
DirectX Version DirectX 11.1 DirectX 11.1
OpenGL Version OpenGL 4.3 OpenGL 4.2
Power (Max TDP) 110 watts 175 watts
Shader Model 5.0 5.0
Bandwidth 86400 MB/sec 153600 MB/sec
Texel Rate 59392 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 14848 Mpixels/sec 32000 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of information (in units of megabytes per second) that can be transferred over the external memory interface in one second. The number is calculated by multiplying the bus width by the speed of its memory. If the card has DDR RAM, it should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied per second. This number is worked out by multiplying the total number of texture units by the core speed of the chip. The better the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the most pixels that the graphics card can possibly write to the local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate also depends on lots of other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree