Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce GT 430 1GB vs GeForce GTX 650


The GeForce GT 430 1GB has a GPU core speed of 700 MHz, and the 1024 MB of GDDR3 memory is set to run at 900 MHz through a 128-bit bus. It also is made up of 96 SPUs, 16 TAUs, and 4 Raster Operation Units.

Compare all that to the GeForce GTX 650, which features GPU core speed of 1058 MHz, and 2048 MB of GDDR5 RAM set to run at 1250 MHz through a 128-bit bus. It also features 384 Stream Processors, 32 TAUs, and 16 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 430 1GB 60 Watts
GeForce GTX 650 64 Watts
Difference: 4 Watts (7%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 650 should perform quite a bit faster than the GeForce GT 430 1GB overall. (explain)

GeForce GTX 650 80000 MB/sec
GeForce GT 430 1GB 28800 MB/sec
Difference: 51200 (178%)

Texel Rate

The GeForce GTX 650 is much (about 202%) better at AF than the GeForce GT 430 1GB. (explain)

GeForce GTX 650 33856 Mtexels/sec
GeForce GT 430 1GB 11200 Mtexels/sec
Difference: 22656 (202%)

Pixel Rate

The GeForce GTX 650 will be quite a bit (approximately 505%) more effective at FSAA than the GeForce GT 430 1GB, and capable of handling higher resolutions better. (explain)

GeForce GTX 650 16928 Mpixels/sec
GeForce GT 430 1GB 2800 Mpixels/sec
Difference: 14128 (505%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 430 1GB

GeForce GTX 650

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce GT 430 1GB GeForce GTX 650
Manufacturer nVidia nVidia
Year October 2010 September 2012
Code Name GF108 GK107
Memory 1024 MB 2048 MB
Core Speed 700 MHz 1058 MHz
Memory Speed 1800 MHz 5000 MHz
Power (Max TDP) 60 watts 64 watts
Bandwidth 28800 MB/sec 80000 MB/sec
Texel Rate 11200 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 2800 Mpixels/sec 16928 Mpixels/sec
Unified Shaders 96 384
Texture Mapping Units 16 32
Render Output Units 4 16
Bus Type GDDR3 GDDR5
Bus Width 128-bit 128-bit
Fab Process 40 nm 28 nm
Transistors 585 million 1300 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3

Memory Bandwidth: Memory bandwidth is the largest amount of information (in units of MB per second) that can be transported across the external memory interface in a second. The number is calculated by multiplying the bus width by the speed of its memory. In the case of DDR RAM, the result should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed per second. This number is worked out by multiplying the total number of texture units of the card by the core clock speed of the chip. The better the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip could possibly write to the local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the number of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on quite a few other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to get to the max fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield