Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 430 1GB vs GeForce GTX 650

Intro

The GeForce GT 430 1GB features a core clock frequency of 700 MHz and a GDDR3 memory frequency of 900 MHz. It also features a 128-bit bus, and makes use of a 40 nm design. It is made up of 96 SPUs, 16 Texture Address Units, and 4 Raster Operation Units.

Compare that to the GeForce GTX 650, which features a core clock frequency of 1058 MHz and a GDDR5 memory frequency of 1250 MHz. It also uses a 128-bit memory bus, and uses a 28 nm design. It features 384 SPUs, 32 Texture Address Units, and 16 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 430 1GB 60 Watts
GeForce GTX 650 64 Watts
Difference: 4 Watts (7%)

Memory Bandwidth

In theory, the GeForce GTX 650 should perform a lot faster than the GeForce GT 430 1GB overall. (explain)

GeForce GTX 650 80000 MB/sec
GeForce GT 430 1GB 28800 MB/sec
Difference: 51200 (178%)

Texel Rate

The GeForce GTX 650 will be much (more or less 202%) better at texture filtering than the GeForce GT 430 1GB. (explain)

GeForce GTX 650 33856 Mtexels/sec
GeForce GT 430 1GB 11200 Mtexels/sec
Difference: 22656 (202%)

Pixel Rate

The GeForce GTX 650 will be quite a bit (about 505%) more effective at full screen anti-aliasing than the GeForce GT 430 1GB, and should be able to handle higher resolutions more effectively. (explain)

GeForce GTX 650 16928 Mpixels/sec
GeForce GT 430 1GB 2800 Mpixels/sec
Difference: 14128 (505%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 430 1GB

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 430 1GB GeForce GTX 650
Manufacturer nVidia nVidia
Year October 2010 September 2012
Code Name GF108 GK107
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 700 MHz 1058 MHz
Shader Speed 1400 MHz 1058 MHz
Memory Speed 900 MHz (1800 MHz effective) 1250 MHz (5000 MHz effective)
Unified Shaders 96 384
Texture Mapping Units 16 32
Render Output Units 4 16
Bus Type GDDR3 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3
Power (Max TDP) 60 watts 64 watts
Shader Model 5.0 5.0
Bandwidth 28800 MB/sec 80000 MB/sec
Texel Rate 11200 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 2800 Mpixels/sec 16928 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of information (measured in megabytes per second) that can be moved over the external memory interface within a second. It's calculated by multiplying the card's interface width by its memory speed. In the case of DDR RAM, the result should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied in one second. This figure is calculated by multiplying the total texture units of the card by the core speed of the chip. The higher this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the most pixels the video card could possibly record to the local memory in one second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate is also dependant on lots of other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing