Compare any two graphics cards:
VS

GeForce GTX 470 vs GeForce GTX 650

Intro

The GeForce GTX 470 features a clock speed of 607 MHz and a GDDR5 memory speed of 837 MHz. It also features a 320-bit memory bus, and makes use of a 40 nm design. It is made up of 448 SPUs, 56 Texture Address Units, and 40 Raster Operation Units.

Compare all that to the GeForce GTX 650, which comes with a clock frequency of 1058 MHz and a GDDR5 memory frequency of 1250 MHz. It also uses a 128-bit memory bus, and makes use of a 28 nm design. It features 384 SPUs, 32 TAUs, and 16 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
GeForce GTX 470 215 Watts
Difference: 151 Watts (236%)

Memory Bandwidth

Performance-wise, the GeForce GTX 470 should theoretically be much superior to the GeForce GTX 650 in general. (explain)

GeForce GTX 470 133920 MB/sec
GeForce GTX 650 80000 MB/sec
Difference: 53920 (67%)

Texel Rate

The GeForce GTX 470 is a bit (more or less 0%) more effective at anisotropic filtering than the GeForce GTX 650. (explain)

GeForce GTX 470 33992 Mtexels/sec
GeForce GTX 650 33856 Mtexels/sec
Difference: 136 (0%)

Pixel Rate

The GeForce GTX 470 is quite a bit (more or less 43%) better at AA than the GeForce GTX 650, and able to handle higher resolutions while still performing well. (explain)

GeForce GTX 470 24280 Mpixels/sec
GeForce GTX 650 16928 Mpixels/sec
Difference: 7352 (43%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 470

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 470 GeForce GTX 650
Manufacturer nVidia nVidia
Year March 2010 September 2012
Code Name GF100 GK107
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1280 MB 2048 MB
Core Speed 607 MHz 1058 MHz
Shader Speed 1215 MHz 1058 MHz
Memory Speed 3348 MHz 5000 MHz
Unified Shaders 448 384
Texture Mapping Units 56 32
Render Output Units 40 16
Bus Type GDDR5 GDDR5
Bus Width 320-bit 128-bit
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3
Power (Max TDP) 215 watts 64 watts
Shader Model 5.0 5.0
Bandwidth 133920 MB/sec 80000 MB/sec
Texel Rate 33992 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 24280 Mpixels/sec 16928 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (in units of megabytes per second) that can be moved across the external memory interface within a second. It's worked out by multiplying the interface width by its memory clock speed. If it uses DDR type memory, the result should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied in one second. This figure is worked out by multiplying the total texture units of the card by the core clock speed of the chip. The better the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the most pixels the graphics card can possibly write to the local memory in a second - measured in millions of pixels per second. The number is calculated by multiplying the number of Raster Operations Pipelines by the the card's clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate also depends on many other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing