Compare any two graphics cards:
VS

GeForce GTX 480 vs GeForce GTX 650

Intro

The GeForce GTX 480 features a GPU clock speed of 700 MHz, and the 1536 MB of GDDR5 memory runs at 924 MHz through a 384-bit bus. It also is made up of 480 Stream Processors, 60 Texture Address Units, and 48 ROPs.

Compare those specifications to the GeForce GTX 650, which uses a 28 nm design. nVidia has set the core frequency at 1058 MHz. The GDDR5 RAM is set to run at a speed of 1250 MHz on this particular model. It features 384 SPUs along with 32 Texture Address Units and 16 Rasterization Operator Units.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
GeForce GTX 480 250 Watts
Difference: 186 Watts (291%)

Memory Bandwidth

Theoretically, the GeForce GTX 480 should be much faster than the GeForce GTX 650 overall. (explain)

GeForce GTX 480 177408 MB/sec
GeForce GTX 650 80000 MB/sec
Difference: 97408 (122%)

Texel Rate

The GeForce GTX 480 should be a lot (about 24%) faster with regards to AF than the GeForce GTX 650. (explain)

GeForce GTX 480 42000 Mtexels/sec
GeForce GTX 650 33856 Mtexels/sec
Difference: 8144 (24%)

Pixel Rate

The GeForce GTX 480 should be a lot (more or less 98%) more effective at full screen anti-aliasing than the GeForce GTX 650, and should be capable of handling higher screen resolutions better. (explain)

GeForce GTX 480 33600 Mpixels/sec
GeForce GTX 650 16928 Mpixels/sec
Difference: 16672 (98%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 480

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 480 GeForce GTX 650
Manufacturer nVidia nVidia
Year March 2010 September 2012
Code Name GF100 GK107
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1536 MB 2048 MB
Core Speed 700 MHz 1058 MHz
Shader Speed 1401 MHz 1058 MHz
Memory Speed 3696 MHz 5000 MHz
Unified Shaders 480 384
Texture Mapping Units 60 32
Render Output Units 48 16
Bus Type GDDR5 GDDR5
Bus Width 384-bit 128-bit
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3
Power (Max TDP) 250 watts 64 watts
Shader Model 5.0 5.0
Bandwidth 177408 MB/sec 80000 MB/sec
Texel Rate 42000 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 33600 Mpixels/sec 16928 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of information (counted in megabytes per second) that can be transferred over the external memory interface within a second. It's calculated by multiplying the bus width by the speed of its memory. In the case of DDR type memory, the result should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied per second. This number is calculated by multiplying the total texture units by the core clock speed of the chip. The better the texel rate, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip can possibly write to its local memory per second - measured in millions of pixels per second. The figure is worked out by multiplying the number of Raster Operations Pipelines by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate also depends on lots of other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing