Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 480 vs GeForce GTX 650

Intro

The GeForce GTX 480 comes with a clock speed of 700 MHz and a GDDR5 memory speed of 924 MHz. It also features a 384-bit memory bus, and uses a 40 nm design. It features 480 SPUs, 60 Texture Address Units, and 48 ROPs.

Compare all of that to the GeForce GTX 650, which comes with a GPU core clock speed of 1058 MHz, and 2048 MB of GDDR5 memory set to run at 1250 MHz through a 128-bit bus. It also features 384 Stream Processors, 32 TAUs, and 16 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
GeForce GTX 480 250 Watts
Difference: 186 Watts (291%)

Memory Bandwidth

In theory, the GeForce GTX 480 will be 122% faster than the GeForce GTX 650 in general, because of its greater data rate. (explain)

GeForce GTX 480 177408 MB/sec
GeForce GTX 650 80000 MB/sec
Difference: 97408 (122%)

Texel Rate

The GeForce GTX 480 should be much (approximately 24%) more effective at texture filtering than the GeForce GTX 650. (explain)

GeForce GTX 480 42000 Mtexels/sec
GeForce GTX 650 33856 Mtexels/sec
Difference: 8144 (24%)

Pixel Rate

The GeForce GTX 480 will be quite a bit (more or less 98%) better at FSAA than the GeForce GTX 650, and also capable of handling higher resolutions better. (explain)

GeForce GTX 480 33600 Mpixels/sec
GeForce GTX 650 16928 Mpixels/sec
Difference: 16672 (98%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 480

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 480 GeForce GTX 650
Manufacturer nVidia nVidia
Year March 2010 September 2012
Code Name GF100 GK107
Memory 1536 MB 2048 MB
Core Speed 700 MHz 1058 MHz
Memory Speed 3696 MHz 5000 MHz
Power (Max TDP) 250 watts 64 watts
Bandwidth 177408 MB/sec 80000 MB/sec
Texel Rate 42000 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 33600 Mpixels/sec 16928 Mpixels/sec
Unified Shaders 480 384
Texture Mapping Units 60 32
Render Output Units 48 16
Bus Type GDDR5 GDDR5
Bus Width 384-bit 128-bit
Fab Process 40 nm 28 nm
Transistors 3000 million 1300 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3

Memory Bandwidth: Memory bandwidth is the largest amount of information (measured in MB per second) that can be moved past the external memory interface in one second. It's calculated by multiplying the card's bus width by the speed of its memory. In the case of DDR RAM, it must be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed per second. This is calculated by multiplying the total texture units by the core clock speed of the chip. The higher the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card can possibly write to its local memory per second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate is also dependant on quite a few other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]