Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 480 vs GeForce GTX 650

Intro

The GeForce GTX 480 uses a 40 nm design. nVidia has set the core speed at 700 MHz. The GDDR5 RAM is set to run at a speed of 924 MHz on this specific model. It features 480 SPUs along with 60 Texture Address Units and 48 Rasterization Operator Units.

Compare those specs to the GeForce GTX 650, which comes with a core clock frequency of 1058 MHz and a GDDR5 memory speed of 1250 MHz. It also uses a 128-bit memory bus, and makes use of a 28 nm design. It is made up of 384 SPUs, 32 TAUs, and 16 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
GeForce GTX 480 250 Watts
Difference: 186 Watts (291%)

Memory Bandwidth

Performance-wise, the GeForce GTX 480 should theoretically be quite a bit better than the GeForce GTX 650 in general. (explain)

GeForce GTX 480 177408 MB/sec
GeForce GTX 650 80000 MB/sec
Difference: 97408 (122%)

Texel Rate

The GeForce GTX 480 will be a lot (approximately 24%) better at texture filtering than the GeForce GTX 650. (explain)

GeForce GTX 480 42000 Mtexels/sec
GeForce GTX 650 33856 Mtexels/sec
Difference: 8144 (24%)

Pixel Rate

If using lots of anti-aliasing is important to you, then the GeForce GTX 480 is the winner, by a large margin. (explain)

GeForce GTX 480 33600 Mpixels/sec
GeForce GTX 650 16928 Mpixels/sec
Difference: 16672 (98%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 480

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 480 GeForce GTX 650
Manufacturer nVidia nVidia
Year March 2010 September 2012
Code Name GF100 GK107
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1536 MB 2048 MB
Core Speed 700 MHz 1058 MHz
Shader Speed 1401 MHz 1058 MHz
Memory Speed 924 MHz (3696 MHz effective) 1250 MHz (5000 MHz effective)
Unified Shaders 480 384
Texture Mapping Units 60 32
Render Output Units 48 16
Bus Type GDDR5 GDDR5
Bus Width 384-bit 128-bit
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3
Power (Max TDP) 250 watts 64 watts
Shader Model 5.0 5.0
Bandwidth 177408 MB/sec 80000 MB/sec
Texel Rate 42000 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 33600 Mpixels/sec 16928 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of information (measured in megabytes per second) that can be transferred over the external memory interface in one second. It's calculated by multiplying the interface width by its memory clock speed. If it uses DDR RAM, the result should be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied in one second. This number is calculated by multiplying the total number of texture units by the core speed of the chip. The better this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card can possibly write to its local memory in a second - measured in millions of pixels per second. The number is calculated by multiplying the amount of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate is also dependant on lots of other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing