Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 480 vs GeForce GTX 650

Intro

The GeForce GTX 480 makes use of a 40 nm design. nVidia has set the core speed at 700 MHz. The GDDR5 memory works at a speed of 924 MHz on this specific card. It features 480 SPUs as well as 60 Texture Address Units and 48 Rasterization Operator Units.

Compare those specs to the GeForce GTX 650, which makes use of a 28 nm design. nVidia has clocked the core speed at 1058 MHz. The GDDR5 memory is set to run at a speed of 1250 MHz on this particular card. It features 384 SPUs along with 32 Texture Address Units and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
GeForce GTX 480 250 Watts
Difference: 186 Watts (291%)

Memory Bandwidth

Theoretically, the GeForce GTX 480 should perform much faster than the GeForce GTX 650 overall. (explain)

GeForce GTX 480 177408 MB/sec
GeForce GTX 650 80000 MB/sec
Difference: 97408 (122%)

Texel Rate

The GeForce GTX 480 will be much (about 24%) more effective at texture filtering than the GeForce GTX 650. (explain)

GeForce GTX 480 42000 Mtexels/sec
GeForce GTX 650 33856 Mtexels/sec
Difference: 8144 (24%)

Pixel Rate

If using high levels of AA is important to you, then the GeForce GTX 480 is superior to the GeForce GTX 650, and very much so. (explain)

GeForce GTX 480 33600 Mpixels/sec
GeForce GTX 650 16928 Mpixels/sec
Difference: 16672 (98%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 480

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 480 GeForce GTX 650
Manufacturer nVidia nVidia
Year March 2010 September 2012
Code Name GF100 GK107
Memory 1536 MB 2048 MB
Core Speed 700 MHz 1058 MHz
Memory Speed 3696 MHz 5000 MHz
Power (Max TDP) 250 watts 64 watts
Bandwidth 177408 MB/sec 80000 MB/sec
Texel Rate 42000 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 33600 Mpixels/sec 16928 Mpixels/sec
Unified Shaders 480 384
Texture Mapping Units 60 32
Render Output Units 48 16
Bus Type GDDR5 GDDR5
Bus Width 384-bit 128-bit
Fab Process 40 nm 28 nm
Transistors 3000 million 1300 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3

Memory Bandwidth: Bandwidth is the maximum amount of information (in units of megabytes per second) that can be transferred over the external memory interface in a second. The number is calculated by multiplying the interface width by its memory clock speed. In the case of DDR type memory, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied per second. This figure is calculated by multiplying the total texture units by the core speed of the chip. The higher this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the most pixels that the graphics card can possibly write to the local memory in a second - measured in millions of pixels per second. The figure is worked out by multiplying the number of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on many other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]