Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 660 Ti vs Radeon HD 6870

Intro

The GeForce GTX 660 Ti uses a 28 nm design. nVidia has set the core frequency at 915 MHz. The GDDR5 memory runs at a speed of 1500 MHz on this specific card. It features 1344 SPUs along with 112 TAUs and 24 ROPs.

Compare that to the Radeon HD 6870, which uses a 40 nm design. AMD has set the core speed at 900 MHz. The GDDR5 memory runs at a speed of 1050 MHz on this specific card. It features 1120 SPUs as well as 56 TAUs and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 660 Ti 150 Watts
Radeon HD 6870 151 Watts
Difference: 1 Watts (1%)

Memory Bandwidth

In theory, the GeForce GTX 660 Ti will be 7% quicker than the Radeon HD 6870 overall, due to its higher bandwidth. (explain)

GeForce GTX 660 Ti 144000 MB/sec
Radeon HD 6870 134400 MB/sec
Difference: 9600 (7%)

Texel Rate

The GeForce GTX 660 Ti should be quite a bit (more or less 103%) faster with regards to texture filtering than the Radeon HD 6870. (explain)

GeForce GTX 660 Ti 102480 Mtexels/sec
Radeon HD 6870 50400 Mtexels/sec
Difference: 52080 (103%)

Pixel Rate

The Radeon HD 6870 is much (more or less 31%) better at FSAA than the GeForce GTX 660 Ti, and should be capable of handling higher resolutions without losing too much performance. (explain)

Radeon HD 6870 28800 Mpixels/sec
GeForce GTX 660 Ti 21960 Mpixels/sec
Difference: 6840 (31%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 660 Ti

Amazon.com

Radeon HD 6870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 660 Ti Radeon HD 6870
Manufacturer nVidia AMD
Year August 2012 October 2010
Code Name GK104 Barts XT
Fab Process 28 nm 40 nm
Bus PCIe 3.0 x16 PCIe x16
Memory 2048 MB 1024 MB
Core Speed 915 MHz 900 MHz
Shader Speed 915 MHz (N/A) MHz
Memory Speed 1500 MHz (6000 MHz effective) 1050 MHz (4200 MHz effective)
Unified Shaders 1344 1120
Texture Mapping Units 112 56
Render Output Units 24 32
Bus Type GDDR5 GDDR5
Bus Width 192-bit 256-bit
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.3 OpenGL 4.1
Power (Max TDP) 150 watts 151 watts
Shader Model 5.0 5.0
Bandwidth 144000 MB/sec 134400 MB/sec
Texel Rate 102480 Mtexels/sec 50400 Mtexels/sec
Pixel Rate 21960 Mpixels/sec 28800 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of information (measured in megabytes per second) that can be transported across the external memory interface in a second. It is worked out by multiplying the card's interface width by its memory clock speed. In the case of DDR RAM, it must be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the faster the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed in one second. This number is worked out by multiplying the total amount of texture units by the core clock speed of the chip. The better the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card could possibly write to the local memory in a second - measured in millions of pixels per second. The number is worked out by multiplying the number of Raster Operations Pipelines by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate is also dependant on quite a few other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing