Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 660 Ti vs Radeon HD 6870

Intro

The GeForce GTX 660 Ti has core speeds of 915 MHz on the GPU, and 1500 MHz on the 2048 MB of GDDR5 RAM. It features 1344 SPUs along with 112 Texture Address Units and 24 ROPs.

Compare those specifications to the Radeon HD 6870, which has clock speeds of 900 MHz on the GPU, and 1050 MHz on the 1024 MB of GDDR5 memory. It features 1120 SPUs along with 56 TAUs and 32 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 660 Ti 150 Watts
Radeon HD 6870 151 Watts
Difference: 1 Watts (1%)

Memory Bandwidth

The GeForce GTX 660 Ti, in theory, should be just a bit faster than the Radeon HD 6870 in general. (explain)

GeForce GTX 660 Ti 144000 MB/sec
Radeon HD 6870 134400 MB/sec
Difference: 9600 (7%)

Texel Rate

The GeForce GTX 660 Ti should be a lot (more or less 103%) better at texture filtering than the Radeon HD 6870. (explain)

GeForce GTX 660 Ti 102480 Mtexels/sec
Radeon HD 6870 50400 Mtexels/sec
Difference: 52080 (103%)

Pixel Rate

The Radeon HD 6870 should be a lot (more or less 31%) better at full screen anti-aliasing than the GeForce GTX 660 Ti, and also capable of handling higher resolutions better. (explain)

Radeon HD 6870 28800 Mpixels/sec
GeForce GTX 660 Ti 21960 Mpixels/sec
Difference: 6840 (31%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 660 Ti

Amazon.com

Radeon HD 6870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 660 Ti Radeon HD 6870
Manufacturer nVidia AMD
Year August 2012 October 2010
Code Name GK104 Barts XT
Fab Process 28 nm 40 nm
Bus PCIe 3.0 x16 PCIe x16
Memory 2048 MB 1024 MB
Core Speed 915 MHz 900 MHz
Shader Speed 915 MHz (N/A) MHz
Memory Speed 1500 MHz (6000 MHz effective) 1050 MHz (4200 MHz effective)
Unified Shaders 1344 1120
Texture Mapping Units 112 56
Render Output Units 24 32
Bus Type GDDR5 GDDR5
Bus Width 192-bit 256-bit
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.3 OpenGL 4.1
Power (Max TDP) 150 watts 151 watts
Shader Model 5.0 5.0
Bandwidth 144000 MB/sec 134400 MB/sec
Texel Rate 102480 Mtexels/sec 50400 Mtexels/sec
Pixel Rate 21960 Mpixels/sec 28800 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of information (in units of megabytes per second) that can be transported past the external memory interface in a second. It is worked out by multiplying the bus width by its memory clock speed. In the case of DDR memory, the result should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The higher the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied in one second. This figure is calculated by multiplying the total texture units by the core speed of the chip. The higher the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card can possibly record to its local memory per second - measured in millions of pixels per second. The number is worked out by multiplying the number of ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate also depends on lots of other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree