Compare any two graphics cards:
VS

GeForce GT 640 DDR3 vs GeForce GTX 550 Ti

Intro

The GeForce GT 640 DDR3 comes with a GPU core speed of 900 MHz, and the 2048 MB of DDR3 memory runs at 1782 MHz through a 128-bit bus. It also is made up of 384 Stream Processors, 32 Texture Address Units, and 16 Raster Operation Units.

Compare that to the GeForce GTX 550 Ti, which uses a 40 nm design. nVidia has clocked the core frequency at 900 MHz. The GDDR5 memory is set to run at a frequency of 1026 MHz on this specific model. It features 192 SPUs along with 32 TAUs and 24 Rasterization Operator Units.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 640 DDR3 65 Watts
GeForce GTX 550 Ti 116 Watts
Difference: 51 Watts (78%)

Memory Bandwidth

In theory, the GeForce GTX 550 Ti is 73% quicker than the GeForce GT 640 DDR3 overall, due to its greater bandwidth. (explain)

GeForce GTX 550 Ti 98496 MB/sec
GeForce GT 640 DDR3 57024 MB/sec
Difference: 41472 (73%)

Texel Rate

Both cards have exactly the same texel fill rate, so in theory they should be equally good at at AF. (explain)

Pixel Rate

The GeForce GTX 550 Ti will be quite a bit (more or less 50%) faster with regards to AA than the GeForce GT 640 DDR3, and also should be capable of handling higher resolutions while still performing well. (explain)

GeForce GTX 550 Ti 21600 Mpixels/sec
GeForce GT 640 DDR3 14400 Mpixels/sec
Difference: 7200 (50%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 640 DDR3

Amazon.com

GeForce GTX 550 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 640 DDR3 GeForce GTX 550 Ti
Manufacturer nVidia nVidia
Year June 2012 March 2011
Code Name GK107 GF116
Fab Process 28 nm 40 nm
Bus PCIe 3.0 x16 PCIe 2.1 x16
Memory 2048 MB 1024 MB
Core Speed 900 MHz 900 MHz
Shader Speed 900 MHz 1800 MHz
Memory Speed 3564 MHz 4104 MHz
Unified Shaders 384 192
Texture Mapping Units 32 32
Render Output Units 16 24
Bus Type DDR3 GDDR5
Bus Width 128-bit 192-bit
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.2 OpenGL 4.1
Power (Max TDP) 65 watts 116 watts
Shader Model 5.0 5.0
Bandwidth 57024 MB/sec 98496 MB/sec
Texel Rate 28800 Mtexels/sec 28800 Mtexels/sec
Pixel Rate 14400 Mpixels/sec 21600 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (counted in megabytes per second) that can be transported across the external memory interface in a second. It's worked out by multiplying the interface width by its memory clock speed. In the case of DDR type memory, it must be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the better the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied per second. This is calculated by multiplying the total amount of texture units by the core speed of the chip. The better this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card could possibly write to its local memory in a second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of Raster Operations Pipelines by the clock speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on quite a few other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing