Join Us On Facebook

Compare any two graphics cards:
VS

Geforce GTX 680 vs Radeon HD 5750 1GB

Intro

The Geforce GTX 680 has core clock speeds of 1006 MHz on the GPU, and 1502 MHz on the 2048 MB of GDDR5 memory. It features 1536 SPUs as well as 128 Texture Address Units and 32 ROPs.

Compare all that to the Radeon HD 5750 1GB, which makes use of a 40 nm design. AMD has set the core speed at 700 MHz. The GDDR5 memory runs at a speed of 1150 MHz on this particular model. It features 720(144x5) SPUs as well as 36 Texture Address Units and 16 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5750 1GB 86 Watts
Geforce GTX 680 195 Watts
Difference: 109 Watts (127%)

Memory Bandwidth

The Geforce GTX 680, in theory, should perform a lot faster than the Radeon HD 5750 1GB overall. (explain)

Geforce GTX 680 192256 MB/sec
Radeon HD 5750 1GB 73600 MB/sec
Difference: 118656 (161%)

Texel Rate

The Geforce GTX 680 should be quite a bit (more or less 411%) better at anisotropic filtering than the Radeon HD 5750 1GB. (explain)

Geforce GTX 680 128768 Mtexels/sec
Radeon HD 5750 1GB 25200 Mtexels/sec
Difference: 103568 (411%)

Pixel Rate

The Geforce GTX 680 should be much (about 187%) faster with regards to anti-aliasing than the Radeon HD 5750 1GB, and also will be able to handle higher screen resolutions without slowing down too much. (explain)

Geforce GTX 680 32192 Mpixels/sec
Radeon HD 5750 1GB 11200 Mpixels/sec
Difference: 20992 (187%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Geforce GTX 680

Amazon.com

Radeon HD 5750 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Geforce GTX 680 Radeon HD 5750 1GB
Manufacturer nVidia AMD
Year March 2012 October 13, 2009
Code Name GK104 Juniper LE
Fab Process 28 nm 40 nm
Bus PCIe 3.0 x16 PCIe 2.1 x16
Memory 2048 MB 1024 MB
Core Speed 1006 MHz 700 MHz
Shader Speed 1006 MHz (N/A) MHz
Memory Speed 1502 MHz (6008 MHz effective) 1150 MHz (4600 MHz effective)
Unified Shaders 1536 720(144x5)
Texture Mapping Units 128 36
Render Output Units 32 16
Bus Type GDDR5 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.2 OpenGL 3.2
Power (Max TDP) 195 watts 86 watts
Shader Model 5.0 5.0
Bandwidth 192256 MB/sec 73600 MB/sec
Texel Rate 128768 Mtexels/sec 25200 Mtexels/sec
Pixel Rate 32192 Mpixels/sec 11200 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of information (measured in MB per second) that can be transported past the external memory interface in one second. It's worked out by multiplying the card's bus width by its memory speed. In the case of DDR RAM, it should be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed per second. This figure is calculated by multiplying the total amount of texture units of the card by the core clock speed of the chip. The better the texel rate, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card could possibly write to the local memory in a second - measured in millions of pixels per second. The number is calculated by multiplying the amount of ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate also depends on lots of other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree