Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

Geforce GTX 680 vs Radeon HD 5750 1GB


Intro

The Geforce GTX 680 has clock speeds of 1006 MHz on the GPU, and 1502 MHz on the 2048 MB of GDDR5 RAM. It features 1536 SPUs as well as 128 Texture Address Units and 32 ROPs.

Compare all that to the Radeon HD 5750 1GB, which features core speeds of 700 MHz on the GPU, and 1150 MHz on the 1024 MB of GDDR5 RAM. It features 720(144x5) SPUs as well as 36 TAUs and 16 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5750 1GB 86 Watts
Geforce GTX 680 195 Watts
Difference: 109 Watts (127%)

Memory Bandwidth

The Geforce GTX 680 should in theory be quite a bit faster than the Radeon HD 5750 1GB overall. (explain)

Geforce GTX 680 192256 MB/sec
Radeon HD 5750 1GB 73600 MB/sec
Difference: 118656 (161%)

Texel Rate

The Geforce GTX 680 is quite a bit (more or less 411%) more effective at texture filtering than the Radeon HD 5750 1GB. (explain)

Geforce GTX 680 128768 Mtexels/sec
Radeon HD 5750 1GB 25200 Mtexels/sec
Difference: 103568 (411%)

Pixel Rate

If using a high screen resolution is important to you, then the Geforce GTX 680 is the winner, and very much so. (explain)

Geforce GTX 680 32192 Mpixels/sec
Radeon HD 5750 1GB 11200 Mpixels/sec
Difference: 20992 (187%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Geforce GTX 680

Radeon HD 5750 1GB

Specifications

Display Specifications

Hide Specifications

Model Geforce GTX 680 Radeon HD 5750 1GB
Manufacturer nVidia AMD
Year March 2012 October 13, 2009
Code Name GK104 Juniper LE
Memory 2048 MB 1024 MB
Core Speed 1006 MHz 700 MHz
Memory Speed 6008 MHz 4600 MHz
Power (Max TDP) 195 watts 86 watts
Bandwidth 192256 MB/sec 73600 MB/sec
Texel Rate 128768 Mtexels/sec 25200 Mtexels/sec
Pixel Rate 32192 Mpixels/sec 11200 Mpixels/sec
Unified Shaders 1536 720(144x5)
Texture Mapping Units 128 36
Render Output Units 32 16
Bus Type GDDR5 GDDR5
Bus Width 256-bit 128-bit
Fab Process 28 nm 40 nm
Transistors 3540 million 1040 million
Bus PCIe 3.0 x16 PCIe 2.1 x16
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.2 OpenGL 3.2

Memory Bandwidth: Bandwidth is the max amount of data (counted in megabytes per second) that can be transported over the external memory interface in a second. It's worked out by multiplying the card's interface width by its memory clock speed. If the card has DDR type memory, it should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This is calculated by multiplying the total texture units by the core clock speed of the chip. The higher the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the most pixels the graphics card can possibly record to the local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on quite a few other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the max fill rate.

Geforce GTX 680

Radeon HD 5750 1GB

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


*

WordPress Anti-Spam by WP-SpamShield


[X]
[X]