Join Us On Facebook

Compare any two graphics cards:
VS

Geforce GTX 680 vs Radeon HD 5750 1GB

Intro

The Geforce GTX 680 uses a 28 nm design. nVidia has set the core speed at 1006 MHz. The GDDR5 RAM works at a frequency of 1502 MHz on this specific card. It features 1536 SPUs along with 128 Texture Address Units and 32 ROPs.

Compare those specs to the Radeon HD 5750 1GB, which features core clock speeds of 700 MHz on the GPU, and 1150 MHz on the 1024 MB of GDDR5 memory. It features 720(144x5) SPUs along with 36 TAUs and 16 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5750 1GB 86 Watts
Geforce GTX 680 195 Watts
Difference: 109 Watts (127%)

Memory Bandwidth

In theory, the Geforce GTX 680 will be 161% quicker than the Radeon HD 5750 1GB in general, due to its higher data rate. (explain)

Geforce GTX 680 192256 MB/sec
Radeon HD 5750 1GB 73600 MB/sec
Difference: 118656 (161%)

Texel Rate

The Geforce GTX 680 will be much (about 411%) more effective at texture filtering than the Radeon HD 5750 1GB. (explain)

Geforce GTX 680 128768 Mtexels/sec
Radeon HD 5750 1GB 25200 Mtexels/sec
Difference: 103568 (411%)

Pixel Rate

The Geforce GTX 680 will be much (about 187%) faster with regards to anti-aliasing than the Radeon HD 5750 1GB, and capable of handling higher screen resolutions better. (explain)

Geforce GTX 680 32192 Mpixels/sec
Radeon HD 5750 1GB 11200 Mpixels/sec
Difference: 20992 (187%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Geforce GTX 680

Amazon.com

Radeon HD 5750 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Geforce GTX 680 Radeon HD 5750 1GB
Manufacturer nVidia AMD
Year March 2012 October 13, 2009
Code Name GK104 Juniper LE
Fab Process 28 nm 40 nm
Bus PCIe 3.0 x16 PCIe 2.1 x16
Memory 2048 MB 1024 MB
Core Speed 1006 MHz 700 MHz
Shader Speed 1006 MHz (N/A) MHz
Memory Speed 1502 MHz (6008 MHz effective) 1150 MHz (4600 MHz effective)
Unified Shaders 1536 720(144x5)
Texture Mapping Units 128 36
Render Output Units 32 16
Bus Type GDDR5 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.2 OpenGL 3.2
Power (Max TDP) 195 watts 86 watts
Shader Model 5.0 5.0
Bandwidth 192256 MB/sec 73600 MB/sec
Texel Rate 128768 Mtexels/sec 25200 Mtexels/sec
Pixel Rate 32192 Mpixels/sec 11200 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of information (counted in megabytes per second) that can be moved across the external memory interface in a second. It is worked out by multiplying the interface width by its memory clock speed. If the card has DDR RAM, the result should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied in one second. This figure is calculated by multiplying the total texture units by the core clock speed of the chip. The better the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the most pixels the graphics card can possibly record to its local memory in one second - measured in millions of pixels per second. The number is worked out by multiplying the number of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on many other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree