Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 285 1GB vs Geforce GTX 680

Intro

The GeForce GTX 285 1GB uses a 55 nm design. nVidia has clocked the core frequency at 648 MHz. The GDDR3 memory is set to run at a speed of 1242 MHz on this card. It features 240 SPUs along with 80 TAUs and 32 Rasterization Operator Units.

Compare those specs to the Geforce GTX 680, which makes use of a 28 nm design. nVidia has set the core speed at 1006 MHz. The GDDR5 RAM works at a speed of 1502 MHz on this particular model. It features 1536 SPUs along with 128 TAUs and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Geforce GTX 680 195 Watts
GeForce GTX 285 1GB 204 Watts
Difference: 9 Watts (5%)

Memory Bandwidth

The Geforce GTX 680, in theory, should perform much faster than the GeForce GTX 285 1GB in general. (explain)

Geforce GTX 680 192256 MB/sec
GeForce GTX 285 1GB 158976 MB/sec
Difference: 33280 (21%)

Texel Rate

The Geforce GTX 680 should be quite a bit (more or less 148%) more effective at anisotropic filtering than the GeForce GTX 285 1GB. (explain)

Geforce GTX 680 128768 Mtexels/sec
GeForce GTX 285 1GB 51840 Mtexels/sec
Difference: 76928 (148%)

Pixel Rate

The Geforce GTX 680 will be quite a bit (more or less 55%) faster with regards to AA than the GeForce GTX 285 1GB, and will be able to handle higher resolutions more effectively. (explain)

Geforce GTX 680 32192 Mpixels/sec
GeForce GTX 285 1GB 20736 Mpixels/sec
Difference: 11456 (55%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 285 1GB

Amazon.com

Geforce GTX 680

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 285 1GB Geforce GTX 680
Manufacturer nVidia nVidia
Year January 15, 2009 March 2012
Code Name G200b GK104
Fab Process 55 nm 28 nm
Bus PCIe x16 2.0 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 648 MHz 1006 MHz
Shader Speed 1476 MHz 1006 MHz
Memory Speed 1242 MHz (2484 MHz effective) 1502 MHz (6008 MHz effective)
Unified Shaders 240 1536
Texture Mapping Units 80 128
Render Output Units 32 32
Bus Type GDDR3 GDDR5
Bus Width 512-bit 256-bit
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.1 OpenGL 4.2
Power (Max TDP) 204 watts 195 watts
Shader Model 4.0 5.0
Bandwidth 158976 MB/sec 192256 MB/sec
Texel Rate 51840 Mtexels/sec 128768 Mtexels/sec
Pixel Rate 20736 Mpixels/sec 32192 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of data (in units of megabytes per second) that can be moved across the external memory interface in a second. It is calculated by multiplying the interface width by the speed of its memory. In the case of DDR RAM, it should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed per second. This number is calculated by multiplying the total number of texture units by the core clock speed of the chip. The better the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the most pixels the video card can possibly write to the local memory per second - measured in millions of pixels per second. The figure is calculated by multiplying the number of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on many other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree