Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 285 1GB vs Geforce GTX 680

Intro

The GeForce GTX 285 1GB comes with a GPU core speed of 648 MHz, and the 1024 MB of GDDR3 RAM is set to run at 1242 MHz through a 512-bit bus. It also is made up of 240 Stream Processors, 80 Texture Address Units, and 32 ROPs.

Compare those specifications to the Geforce GTX 680, which uses a 28 nm design. nVidia has clocked the core frequency at 1006 MHz. The GDDR5 RAM is set to run at a frequency of 1502 MHz on this particular card. It features 1536 SPUs as well as 128 Texture Address Units and 32 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Geforce GTX 680 195 Watts
GeForce GTX 285 1GB 204 Watts
Difference: 9 Watts (5%)

Memory Bandwidth

In theory, the Geforce GTX 680 is 21% faster than the GeForce GTX 285 1GB in general, because of its greater data rate. (explain)

Geforce GTX 680 192256 MB/sec
GeForce GTX 285 1GB 158976 MB/sec
Difference: 33280 (21%)

Texel Rate

The Geforce GTX 680 should be much (more or less 148%) more effective at AF than the GeForce GTX 285 1GB. (explain)

Geforce GTX 680 128768 Mtexels/sec
GeForce GTX 285 1GB 51840 Mtexels/sec
Difference: 76928 (148%)

Pixel Rate

If using a high screen resolution is important to you, then the Geforce GTX 680 is the winner, by a large margin. (explain)

Geforce GTX 680 32192 Mpixels/sec
GeForce GTX 285 1GB 20736 Mpixels/sec
Difference: 11456 (55%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 285 1GB

Amazon.com

Geforce GTX 680

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 285 1GB Geforce GTX 680
Manufacturer nVidia nVidia
Year January 15, 2009 March 2012
Code Name G200b GK104
Fab Process 55 nm 28 nm
Bus PCIe x16 2.0 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 648 MHz 1006 MHz
Shader Speed 1476 MHz 1006 MHz
Memory Speed 1242 MHz (2484 MHz effective) 1502 MHz (6008 MHz effective)
Unified Shaders 240 1536
Texture Mapping Units 80 128
Render Output Units 32 32
Bus Type GDDR3 GDDR5
Bus Width 512-bit 256-bit
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.1 OpenGL 4.2
Power (Max TDP) 204 watts 195 watts
Shader Model 4.0 5.0
Bandwidth 158976 MB/sec 192256 MB/sec
Texel Rate 51840 Mtexels/sec 128768 Mtexels/sec
Pixel Rate 20736 Mpixels/sec 32192 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of information (counted in MB per second) that can be transferred over the external memory interface within a second. It's calculated by multiplying the card's bus width by its memory clock speed. If the card has DDR type memory, it must be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The higher the bandwidth is, the faster the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This number is worked out by multiplying the total amount of texture units of the card by the core clock speed of the chip. The higher this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card could possibly write to the local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the amount of Raster Operations Pipelines by the clock speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on many other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree