Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 285 1GB vs Geforce GTX 680

Intro

The GeForce GTX 285 1GB comes with clock speeds of 648 MHz on the GPU, and 1242 MHz on the 1024 MB of GDDR3 RAM. It features 240 SPUs along with 80 Texture Address Units and 32 ROPs.

Compare those specs to the Geforce GTX 680, which features a clock frequency of 1006 MHz and a GDDR5 memory speed of 1502 MHz. It also features a 256-bit memory bus, and makes use of a 28 nm design. It is made up of 1536 SPUs, 128 TAUs, and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Geforce GTX 680 195 Watts
GeForce GTX 285 1GB 204 Watts
Difference: 9 Watts (5%)

Memory Bandwidth

Theoretically speaking, the Geforce GTX 680 should perform much faster than the GeForce GTX 285 1GB in general. (explain)

Geforce GTX 680 192256 MB/sec
GeForce GTX 285 1GB 158976 MB/sec
Difference: 33280 (21%)

Texel Rate

The Geforce GTX 680 should be much (more or less 148%) better at texture filtering than the GeForce GTX 285 1GB. (explain)

Geforce GTX 680 128768 Mtexels/sec
GeForce GTX 285 1GB 51840 Mtexels/sec
Difference: 76928 (148%)

Pixel Rate

The Geforce GTX 680 is quite a bit (about 55%) better at AA than the GeForce GTX 285 1GB, and should be capable of handling higher resolutions without losing too much performance. (explain)

Geforce GTX 680 32192 Mpixels/sec
GeForce GTX 285 1GB 20736 Mpixels/sec
Difference: 11456 (55%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

GeForce GTX 285 1GB

Amazon.com

Other US-based stores

Geforce GTX 680

Amazon.com

Other US-based stores

Specifications

Model GeForce GTX 285 1GB Geforce GTX 680
Manufacturer nVidia nVidia
Year January 15, 2009 March 2012
Code Name G200b GK104
Fab Process 55 nm 28 nm
Bus PCIe x16 2.0 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 648 MHz 1006 MHz
Shader Speed 1476 MHz 1006 MHz
Memory Speed 1242 MHz (2484 MHz effective) 1502 MHz (6008 MHz effective)
Unified Shaders 240 1536
Texture Mapping Units 80 128
Render Output Units 32 32
Bus Type GDDR3 GDDR5
Bus Width 512-bit 256-bit
DirectX Version DirectX 10 DirectX 11.1
OpenGL Version OpenGL 3.1 OpenGL 4.2
Power (Max TDP) 204 watts 195 watts
Shader Model 4.0 5.0
Bandwidth 158976 MB/sec 192256 MB/sec
Texel Rate 51840 Mtexels/sec 128768 Mtexels/sec
Pixel Rate 20736 Mpixels/sec 32192 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (counted in megabytes per second) that can be moved across the external memory interface in a second. The number is worked out by multiplying the card's bus width by the speed of its memory. If the card has DDR memory, it must be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed in one second. This figure is worked out by multiplying the total number of texture units by the core speed of the chip. The better the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics chip can possibly record to the local memory per second - measured in millions of pixels per second. The number is worked out by multiplying the number of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate also depends on lots of other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree