Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 580 vs Radeon HD 7850

Intro

The GeForce GTX 580 features core clock speeds of 772 MHz on the GPU, and 1002 MHz on the 1536 MB of GDDR5 memory. It features 512 SPUs along with 64 TAUs and 48 Rasterization Operator Units.

Compare all of that to the Radeon HD 7850, which uses a 28 nm design. AMD has clocked the core frequency at 860 MHz. The GDDR5 memory is set to run at a frequency of 1200 MHz on this particular model. It features 1024 SPUs along with 64 TAUs and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7850 130 Watts
GeForce GTX 580 244 Watts
Difference: 114 Watts (88%)

Memory Bandwidth

Performance-wise, the GeForce GTX 580 should theoretically be much superior to the Radeon HD 7850 overall. (explain)

GeForce GTX 580 192384 MB/sec
Radeon HD 7850 153600 MB/sec
Difference: 38784 (25%)

Texel Rate

The Radeon HD 7850 is just a bit (approximately 11%) better at anisotropic filtering than the GeForce GTX 580. (explain)

Radeon HD 7850 55040 Mtexels/sec
GeForce GTX 580 49408 Mtexels/sec
Difference: 5632 (11%)

Pixel Rate

If using a high screen resolution is important to you, then the GeForce GTX 580 is a better choice, and very much so. (explain)

GeForce GTX 580 37056 Mpixels/sec
Radeon HD 7850 27520 Mpixels/sec
Difference: 9536 (35%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 580

Amazon.com

Radeon HD 7850

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 580 Radeon HD 7850
Manufacturer nVidia AMD
Year November 2010 March 2012
Code Name GF110 Pitcairn Pro
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1536 MB 2048 MB
Core Speed 772 MHz 860 MHz
Shader Speed 1544 MHz (N/A) MHz
Memory Speed 1002 MHz (4008 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 512 1024
Texture Mapping Units 64 64
Render Output Units 48 32
Bus Type GDDR5 GDDR5
Bus Width 384-bit 256-bit
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 4.1 OpenGL 4.2
Power (Max TDP) 244 watts 130 watts
Shader Model 5.0 5.0
Bandwidth 192384 MB/sec 153600 MB/sec
Texel Rate 49408 Mtexels/sec 55040 Mtexels/sec
Pixel Rate 37056 Mpixels/sec 27520 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of data (measured in megabytes per second) that can be transferred across the external memory interface in a second. It is calculated by multiplying the card's bus width by its memory clock speed. If it uses DDR type RAM, the result should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The higher the memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed in one second. This number is calculated by multiplying the total number of texture units of the card by the core clock speed of the chip. The higher this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card can possibly write to the local memory per second - measured in millions of pixels per second. The number is worked out by multiplying the number of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate also depends on many other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree