Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 560 Ti vs Radeon HD 7870

Intro

The GeForce GTX 560 Ti features core speeds of 822 MHz on the GPU, and 1002 MHz on the 1024 MB of GDDR5 memory. It features 384 SPUs along with 64 Texture Address Units and 32 ROPs.

Compare that to the Radeon HD 7870, which has GPU clock speed of 1000 MHz, and 2048 MB of GDDR5 RAM set to run at 1200 MHz through a 256-bit bus. It also features 1280 SPUs, 80 TAUs, and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 560 Ti 170 Watts
Radeon HD 7870 175 Watts
Difference: 5 Watts (3%)

Memory Bandwidth

Theoretically speaking, the Radeon HD 7870 should be a little bit faster than the GeForce GTX 560 Ti in general. (explain)

Radeon HD 7870 153600 MB/sec
GeForce GTX 560 Ti 128256 MB/sec
Difference: 25344 (20%)

Texel Rate

The Radeon HD 7870 is much (approximately 52%) faster with regards to AF than the GeForce GTX 560 Ti. (explain)

Radeon HD 7870 80000 Mtexels/sec
GeForce GTX 560 Ti 52608 Mtexels/sec
Difference: 27392 (52%)

Pixel Rate

The Radeon HD 7870 is much (approximately 22%) better at FSAA than the GeForce GTX 560 Ti, and also capable of handling higher resolutions more effectively. (explain)

Radeon HD 7870 32000 Mpixels/sec
GeForce GTX 560 Ti 26304 Mpixels/sec
Difference: 5696 (22%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 560 Ti

Amazon.com

Radeon HD 7870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 560 Ti Radeon HD 7870
Manufacturer nVidia AMD
Year January 2011 March 2012
Code Name GF114 Pitcairn XT
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1024 MB 2048 MB
Core Speed 822 MHz 1000 MHz
Shader Speed 1645 MHz (N/A) MHz
Memory Speed 1002 MHz (4008 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 384 1280
Texture Mapping Units 64 80
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 4.1 OpenGL 4.2
Power (Max TDP) 170 watts 175 watts
Shader Model 5.0 5.0
Bandwidth 128256 MB/sec 153600 MB/sec
Texel Rate 52608 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 26304 Mpixels/sec 32000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (measured in MB per second) that can be moved past the external memory interface in one second. It is calculated by multiplying the card's interface width by its memory speed. If the card has DDR RAM, the result should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed per second. This figure is calculated by multiplying the total amount of texture units by the core clock speed of the chip. The higher this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics chip could possibly record to its local memory per second - measured in millions of pixels per second. The figure is worked out by multiplying the number of Render Output Units by the the card's clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate also depends on quite a few other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing