Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 560 Ti vs Radeon HD 7870

Intro

The GeForce GTX 560 Ti uses a 40 nm design. nVidia has clocked the core speed at 822 MHz. The GDDR5 memory runs at a speed of 1002 MHz on this specific card. It features 384 SPUs as well as 64 TAUs and 32 ROPs.

Compare all that to the Radeon HD 7870, which has clock speeds of 1000 MHz on the GPU, and 1200 MHz on the 2048 MB of GDDR5 memory. It features 1280 SPUs as well as 80 TAUs and 32 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 560 Ti 170 Watts
Radeon HD 7870 175 Watts
Difference: 5 Watts (3%)

Memory Bandwidth

The Radeon HD 7870 should in theory be a bit faster than the GeForce GTX 560 Ti overall. (explain)

Radeon HD 7870 153600 MB/sec
GeForce GTX 560 Ti 128256 MB/sec
Difference: 25344 (20%)

Texel Rate

The Radeon HD 7870 is a lot (more or less 52%) more effective at anisotropic filtering than the GeForce GTX 560 Ti. (explain)

Radeon HD 7870 80000 Mtexels/sec
GeForce GTX 560 Ti 52608 Mtexels/sec
Difference: 27392 (52%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the Radeon HD 7870 is the winner, by a large margin. (explain)

Radeon HD 7870 32000 Mpixels/sec
GeForce GTX 560 Ti 26304 Mpixels/sec
Difference: 5696 (22%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 560 Ti

Amazon.com

Radeon HD 7870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 560 Ti Radeon HD 7870
Manufacturer nVidia AMD
Year January 2011 March 2012
Code Name GF114 Pitcairn XT
Memory 1024 MB 2048 MB
Core Speed 822 MHz 1000 MHz
Memory Speed 4008 MHz 4800 MHz
Power (Max TDP) 170 watts 175 watts
Bandwidth 128256 MB/sec 153600 MB/sec
Texel Rate 52608 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 26304 Mpixels/sec 32000 Mpixels/sec
Unified Shaders 384 1280
Texture Mapping Units 64 80
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
Fab Process 40 nm 28 nm
Transistors 1950 million 2800 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 4.1 OpenGL 4.2

Memory Bandwidth: Bandwidth is the largest amount of information (counted in MB per second) that can be moved across the external memory interface in a second. The number is worked out by multiplying the card's interface width by its memory clock speed. In the case of DDR type RAM, it must be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied in one second. This is calculated by multiplying the total number of texture units of the card by the core speed of the chip. The higher the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the most pixels the graphics card can possibly write to the local memory in a second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on quite a few other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]