Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9800 GT 512MB vs Radeon HD 7750

Intro

The GeForce 9800 GT 512MB uses a 65/55 nm design. nVidia has set the core frequency at 600 MHz. The GDDR3 memory works at a frequency of 900 MHz on this specific model. It features 112 SPUs along with 56 Texture Address Units and 16 Rasterization Operator Units.

Compare those specs to the Radeon HD 7750, which makes use of a 28 nm design. AMD has clocked the core frequency at 800 MHz. The GDDR5 RAM works at a speed of 1125 MHz on this particular model. It features 512 SPUs as well as 32 TAUs and 16 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7750 55 Watts
GeForce 9800 GT 512MB 105 Watts
Difference: 50 Watts (91%)

Memory Bandwidth

Theoretically speaking, the Radeon HD 7750 should be 25% faster than the GeForce 9800 GT 512MB in general, due to its greater bandwidth. (explain)

Radeon HD 7750 72000 MB/sec
GeForce 9800 GT 512MB 57600 MB/sec
Difference: 14400 (25%)

Texel Rate

The GeForce 9800 GT 512MB is quite a bit (about 31%) more effective at texture filtering than the Radeon HD 7750. (explain)

GeForce 9800 GT 512MB 33600 Mtexels/sec
Radeon HD 7750 25600 Mtexels/sec
Difference: 8000 (31%)

Pixel Rate

The Radeon HD 7750 is quite a bit (about 33%) better at AA than the GeForce 9800 GT 512MB, and also able to handle higher resolutions while still performing well. (explain)

Radeon HD 7750 12800 Mpixels/sec
GeForce 9800 GT 512MB 9600 Mpixels/sec
Difference: 3200 (33%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9800 GT 512MB

Amazon.com

Radeon HD 7750

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9800 GT 512MB Radeon HD 7750
Manufacturer nVidia AMD
Year July 2008 February 2012
Code Name G92a/b Cape Verde Pro
Fab Process 65/55 nm 28 nm
Bus PCIe x16 2.0 PCIe 3.0 x16
Memory 512 MB 1024 MB
Core Speed 600 MHz 800 MHz
Shader Speed 1500 MHz (N/A) MHz
Memory Speed 900 MHz (1800 MHz effective) 1125 MHz (4500 MHz effective)
Unified Shaders 112 512
Texture Mapping Units 56 32
Render Output Units 16 16
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 10 DirectX 11.1
OpenGL Version OpenGL 3.0 OpenGL 4.2
Power (Max TDP) 105 watts 55 watts
Shader Model 4.0 5.0
Bandwidth 57600 MB/sec 72000 MB/sec
Texel Rate 33600 Mtexels/sec 25600 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 12800 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of data (counted in MB per second) that can be transported across the external memory interface in a second. The number is worked out by multiplying the card's interface width by the speed of its memory. In the case of DDR type memory, it should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed per second. This number is calculated by multiplying the total amount of texture units by the core speed of the chip. The higher the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the most pixels that the graphics card can possibly write to its local memory per second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate also depends on many other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing