Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9800 GT 512MB vs Radeon HD 7750

Intro

The GeForce 9800 GT 512MB has a clock speed of 600 MHz and a GDDR3 memory frequency of 900 MHz. It also uses a 256-bit bus, and uses a 65/55 nm design. It features 112 SPUs, 56 Texture Address Units, and 16 ROPs.

Compare all of that to the Radeon HD 7750, which has core speeds of 800 MHz on the GPU, and 1125 MHz on the 1024 MB of GDDR5 RAM. It features 512 SPUs as well as 32 TAUs and 16 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7750 55 Watts
GeForce 9800 GT 512MB 105 Watts
Difference: 50 Watts (91%)

Memory Bandwidth

In theory, the Radeon HD 7750 should perform much faster than the GeForce 9800 GT 512MB in general. (explain)

Radeon HD 7750 72000 MB/sec
GeForce 9800 GT 512MB 57600 MB/sec
Difference: 14400 (25%)

Texel Rate

The GeForce 9800 GT 512MB will be a lot (about 31%) more effective at anisotropic filtering than the Radeon HD 7750. (explain)

GeForce 9800 GT 512MB 33600 Mtexels/sec
Radeon HD 7750 25600 Mtexels/sec
Difference: 8000 (31%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the Radeon HD 7750 is the winner, and very much so. (explain)

Radeon HD 7750 12800 Mpixels/sec
GeForce 9800 GT 512MB 9600 Mpixels/sec
Difference: 3200 (33%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 9800 GT 512MB

Amazon.com

Radeon HD 7750

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 9800 GT 512MB Radeon HD 7750
Manufacturer nVidia AMD
Year July 2008 February 2012
Code Name G92a/b Cape Verde Pro
Fab Process 65/55 nm 28 nm
Bus PCIe x16 2.0 PCIe 3.0 x16
Memory 512 MB 1024 MB
Core Speed 600 MHz 800 MHz
Shader Speed 1500 MHz (N/A) MHz
Memory Speed 900 MHz (1800 MHz effective) 1125 MHz (4500 MHz effective)
Unified Shaders 112 512
Texture Mapping Units 56 32
Render Output Units 16 16
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 10 DirectX 11.1
OpenGL Version OpenGL 3.0 OpenGL 4.2
Power (Max TDP) 105 watts 55 watts
Shader Model 4.0 5.0
Bandwidth 57600 MB/sec 72000 MB/sec
Texel Rate 33600 Mtexels/sec 25600 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 12800 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of data (counted in MB per second) that can be moved past the external memory interface in one second. The number is calculated by multiplying the card's interface width by its memory clock speed. If it uses DDR memory, the result should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the bandwidth is, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed per second. This number is worked out by multiplying the total number of texture units of the card by the core clock speed of the chip. The higher this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the most pixels the graphics card could possibly record to its local memory per second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of Raster Operations Pipelines by the clock speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate also depends on lots of other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree