Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 9800 GT 512MB vs Radeon HD 7750

Intro

The GeForce 9800 GT 512MB comes with a clock speed of 600 MHz and a GDDR3 memory frequency of 900 MHz. It also features a 256-bit bus, and uses a 65/55 nm design. It is made up of 112 SPUs, 56 Texture Address Units, and 16 Raster Operation Units.

Compare all of that to the Radeon HD 7750, which has a core clock frequency of 800 MHz and a GDDR5 memory frequency of 1125 MHz. It also uses a 128-bit memory bus, and uses a 28 nm design. It is made up of 512 SPUs, 32 Texture Address Units, and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7750 55 Watts
GeForce 9800 GT 512MB 105 Watts
Difference: 50 Watts (91%)

Memory Bandwidth

In theory, the Radeon HD 7750 should be 25% quicker than the GeForce 9800 GT 512MB overall, because of its higher data rate. (explain)

Radeon HD 7750 72000 MB/sec
GeForce 9800 GT 512MB 57600 MB/sec
Difference: 14400 (25%)

Texel Rate

The GeForce 9800 GT 512MB should be quite a bit (approximately 31%) faster with regards to AF than the Radeon HD 7750. (explain)

GeForce 9800 GT 512MB 33600 Mtexels/sec
Radeon HD 7750 25600 Mtexels/sec
Difference: 8000 (31%)

Pixel Rate

The Radeon HD 7750 is a lot (about 33%) faster with regards to FSAA than the GeForce 9800 GT 512MB, and should be able to handle higher resolutions without slowing down too much. (explain)

Radeon HD 7750 12800 Mpixels/sec
GeForce 9800 GT 512MB 9600 Mpixels/sec
Difference: 3200 (33%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9800 GT 512MB

Amazon.com

Radeon HD 7750

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9800 GT 512MB Radeon HD 7750
Manufacturer nVidia AMD
Year July 2008 February 2012
Code Name G92a/b Cape Verde Pro
Memory 512 MB 1024 MB
Core Speed 600 MHz 800 MHz
Memory Speed 1800 MHz 4500 MHz
Power (Max TDP) 105 watts 55 watts
Bandwidth 57600 MB/sec 72000 MB/sec
Texel Rate 33600 Mtexels/sec 25600 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 12800 Mpixels/sec
Unified Shaders 112 512
Texture Mapping Units 56 32
Render Output Units 16 16
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
Fab Process 65/55 nm 28 nm
Transistors 754 million 1500 million
Bus PCIe x16 2.0 PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.1
OpenGL Version OpenGL 3.0 OpenGL 4.2

Memory Bandwidth: Memory bandwidth is the largest amount of information (counted in MB per second) that can be transported across the external memory interface within a second. The number is worked out by multiplying the bus width by its memory speed. If it uses DDR RAM, it must be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied in one second. This number is worked out by multiplying the total number of texture units of the card by the core speed of the chip. The higher the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card could possibly write to its local memory in one second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate also depends on quite a few other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]