Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9800 GT 512MB vs Radeon HD 7750

Intro

The GeForce 9800 GT 512MB comes with a core clock speed of 600 MHz and a GDDR3 memory speed of 900 MHz. It also makes use of a 256-bit memory bus, and uses a 65/55 nm design. It is comprised of 112 SPUs, 56 TAUs, and 16 Raster Operation Units.

Compare all that to the Radeon HD 7750, which uses a 28 nm design. AMD has set the core speed at 800 MHz. The GDDR5 memory works at a frequency of 1125 MHz on this card. It features 512 SPUs along with 32 TAUs and 16 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7750 55 Watts
GeForce 9800 GT 512MB 105 Watts
Difference: 50 Watts (91%)

Memory Bandwidth

In theory, the Radeon HD 7750 will be 25% faster than the GeForce 9800 GT 512MB in general, due to its higher bandwidth. (explain)

Radeon HD 7750 72000 MB/sec
GeForce 9800 GT 512MB 57600 MB/sec
Difference: 14400 (25%)

Texel Rate

The GeForce 9800 GT 512MB will be much (about 31%) more effective at anisotropic filtering than the Radeon HD 7750. (explain)

GeForce 9800 GT 512MB 33600 Mtexels/sec
Radeon HD 7750 25600 Mtexels/sec
Difference: 8000 (31%)

Pixel Rate

If running with a high screen resolution is important to you, then the Radeon HD 7750 is the winner, by a large margin. (explain)

Radeon HD 7750 12800 Mpixels/sec
GeForce 9800 GT 512MB 9600 Mpixels/sec
Difference: 3200 (33%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 9800 GT 512MB

Amazon.com

Radeon HD 7750

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 9800 GT 512MB Radeon HD 7750
Manufacturer nVidia AMD
Year July 2008 February 2012
Code Name G92a/b Cape Verde Pro
Fab Process 65/55 nm 28 nm
Bus PCIe x16 2.0 PCIe 3.0 x16
Memory 512 MB 1024 MB
Core Speed 600 MHz 800 MHz
Shader Speed 1500 MHz (N/A) MHz
Memory Speed 900 MHz (1800 MHz effective) 1125 MHz (4500 MHz effective)
Unified Shaders 112 512
Texture Mapping Units 56 32
Render Output Units 16 16
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 10 DirectX 11.1
OpenGL Version OpenGL 3.0 OpenGL 4.2
Power (Max TDP) 105 watts 55 watts
Shader Model 4.0 5.0
Bandwidth 57600 MB/sec 72000 MB/sec
Texel Rate 33600 Mtexels/sec 25600 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 12800 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of data (counted in megabytes per second) that can be moved over the external memory interface in one second. The number is worked out by multiplying the card's interface width by its memory clock speed. If it uses DDR type memory, the result should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied per second. This figure is worked out by multiplying the total texture units of the card by the core clock speed of the chip. The higher this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the most pixels that the graphics card could possibly record to its local memory per second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate is also dependant on many other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing