Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 9800 GT 512MB vs Radeon HD 7750

Intro

The GeForce 9800 GT 512MB uses a 65/55 nm design. nVidia has set the core frequency at 600 MHz. The GDDR3 memory runs at a frequency of 900 MHz on this particular model. It features 112 SPUs along with 56 Texture Address Units and 16 ROPs.

Compare all of that to the Radeon HD 7750, which features core clock speeds of 800 MHz on the GPU, and 1125 MHz on the 1024 MB of GDDR5 memory. It features 512 SPUs along with 32 TAUs and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7750 55 Watts
GeForce 9800 GT 512MB 105 Watts
Difference: 50 Watts (91%)

Memory Bandwidth

In theory, the Radeon HD 7750 is 25% quicker than the GeForce 9800 GT 512MB overall, due to its greater data rate. (explain)

Radeon HD 7750 72000 MB/sec
GeForce 9800 GT 512MB 57600 MB/sec
Difference: 14400 (25%)

Texel Rate

The GeForce 9800 GT 512MB should be quite a bit (more or less 31%) more effective at texture filtering than the Radeon HD 7750. (explain)

GeForce 9800 GT 512MB 33600 Mtexels/sec
Radeon HD 7750 25600 Mtexels/sec
Difference: 8000 (31%)

Pixel Rate

If using a high screen resolution is important to you, then the Radeon HD 7750 is the winner, and very much so. (explain)

Radeon HD 7750 12800 Mpixels/sec
GeForce 9800 GT 512MB 9600 Mpixels/sec
Difference: 3200 (33%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9800 GT 512MB

Amazon.com

Radeon HD 7750

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9800 GT 512MB Radeon HD 7750
Manufacturer nVidia AMD
Year July 2008 February 2012
Code Name G92a/b Cape Verde Pro
Memory 512 MB 1024 MB
Core Speed 600 MHz 800 MHz
Memory Speed 1800 MHz 4500 MHz
Power (Max TDP) 105 watts 55 watts
Bandwidth 57600 MB/sec 72000 MB/sec
Texel Rate 33600 Mtexels/sec 25600 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 12800 Mpixels/sec
Unified Shaders 112 512
Texture Mapping Units 56 32
Render Output Units 16 16
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
Fab Process 65/55 nm 28 nm
Transistors 754 million 1500 million
Bus PCIe x16 2.0 PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.1
OpenGL Version OpenGL 3.0 OpenGL 4.2

Memory Bandwidth: Memory bandwidth is the maximum amount of data (counted in megabytes per second) that can be moved across the external memory interface within a second. It is calculated by multiplying the bus width by its memory speed. If it uses DDR type RAM, it should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed in one second. This figure is calculated by multiplying the total texture units of the card by the core clock speed of the chip. The better the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum number of pixels the graphics card can possibly write to its local memory per second - measured in millions of pixels per second. The figure is worked out by multiplying the number of Raster Operations Pipelines by the the core clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate is also dependant on many other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]