Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GT 240 GDDR5 vs Radeon HD 7750

Intro

The GeForce GT 240 GDDR5 uses a 40 nm design. nVidia has clocked the core frequency at 550 MHz. The GDDR5 RAM runs at a frequency of 850 MHz on this particular model. It features 96 SPUs along with 32 Texture Address Units and 8 ROPs.

Compare that to the Radeon HD 7750, which features core clock speeds of 800 MHz on the GPU, and 1125 MHz on the 1024 MB of GDDR5 memory. It features 512 SPUs along with 32 TAUs and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7750 55 Watts
GeForce GT 240 GDDR5 70 Watts
Difference: 15 Watts (27%)

Memory Bandwidth

Theoretically speaking, the Radeon HD 7750 should be a lot faster than the GeForce GT 240 GDDR5 in general. (explain)

Radeon HD 7750 72000 MB/sec
GeForce GT 240 GDDR5 54400 MB/sec
Difference: 17600 (32%)

Texel Rate

The Radeon HD 7750 is a lot (more or less 45%) more effective at anisotropic filtering than the GeForce GT 240 GDDR5. (explain)

Radeon HD 7750 25600 Mtexels/sec
GeForce GT 240 GDDR5 17600 Mtexels/sec
Difference: 8000 (45%)

Pixel Rate

If running with a high resolution is important to you, then the Radeon HD 7750 is the winner, by a large margin. (explain)

Radeon HD 7750 12800 Mpixels/sec
GeForce GT 240 GDDR5 4400 Mpixels/sec
Difference: 8400 (191%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 240 GDDR5

Amazon.com

Radeon HD 7750

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 240 GDDR5 Radeon HD 7750
Manufacturer nVidia AMD
Year Novermber 2009 February 2012
Code Name GT215 Cape Verde Pro
Memory 512 MB 1024 MB
Core Speed 550 MHz 800 MHz
Memory Speed 3400 MHz 4500 MHz
Power (Max TDP) 70 watts 55 watts
Bandwidth 54400 MB/sec 72000 MB/sec
Texel Rate 17600 Mtexels/sec 25600 Mtexels/sec
Pixel Rate 4400 Mpixels/sec 12800 Mpixels/sec
Unified Shaders 96 512
Texture Mapping Units 32 32
Render Output Units 8 16
Bus Type GDDR5 GDDR5
Bus Width 128-bit 128-bit
Fab Process 40 nm 28 nm
Transistors 289 million 1500 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 10.1 DirectX 11.1
OpenGL Version OpenGL 3.2 OpenGL 4.2

Memory Bandwidth: Memory bandwidth is the largest amount of information (in units of megabytes per second) that can be transferred over the external memory interface within a second. It's calculated by multiplying the card's interface width by the speed of its memory. If it uses DDR type memory, it must be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed in one second. This is worked out by multiplying the total amount of texture units of the card by the core clock speed of the chip. The higher this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card could possibly record to its local memory per second - measured in millions of pixels per second. The number is worked out by multiplying the amount of Render Output Units by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate also depends on many other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]