Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 240 GDDR5 vs Radeon HD 5750 512MB

Intro

The GeForce GT 240 GDDR5 comes with a core clock speed of 550 MHz and a GDDR5 memory speed of 850 MHz. It also features a 128-bit memory bus, and makes use of a 40 nm design. It is made up of 96 SPUs, 32 TAUs, and 8 Raster Operation Units.

Compare all that to the Radeon HD 5750 512MB, which features a GPU core clock speed of 700 MHz, and 512 MB of GDDR5 memory running at 1150 MHz through a 128-bit bus. It also is comprised of 720(144x5) Stream Processors, 36 Texture Address Units, and 16 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 240 GDDR5 70 Watts
Radeon HD 5750 512MB 86 Watts
Difference: 16 Watts (23%)

Memory Bandwidth

The Radeon HD 5750 512MB should in theory be a lot faster than the GeForce GT 240 GDDR5 in general. (explain)

Radeon HD 5750 512MB 73600 MB/sec
GeForce GT 240 GDDR5 54400 MB/sec
Difference: 19200 (35%)

Texel Rate

The Radeon HD 5750 512MB will be much (approximately 43%) faster with regards to texture filtering than the GeForce GT 240 GDDR5. (explain)

Radeon HD 5750 512MB 25200 Mtexels/sec
GeForce GT 240 GDDR5 17600 Mtexels/sec
Difference: 7600 (43%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the Radeon HD 5750 512MB is a better choice, by a large margin. (explain)

Radeon HD 5750 512MB 11200 Mpixels/sec
GeForce GT 240 GDDR5 4400 Mpixels/sec
Difference: 6800 (155%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 240 GDDR5

Amazon.com

Radeon HD 5750 512MB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 240 GDDR5 Radeon HD 5750 512MB
Manufacturer nVidia AMD
Year Novermber 2009 October 13, 2009
Code Name GT215 Juniper LE
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe 2.1 x16
Memory 512 MB 512 MB
Core Speed 550 MHz 700 MHz
Shader Speed 1360 MHz (N/A) MHz
Memory Speed 850 MHz (3400 MHz effective) 1150 MHz (4600 MHz effective)
Unified Shaders 96 720(144x5)
Texture Mapping Units 32 36
Render Output Units 8 16
Bus Type GDDR5 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 10.1 DirectX 11
OpenGL Version OpenGL 3.2 OpenGL 3.2
Power (Max TDP) 70 watts 86 watts
Shader Model 4.1 5.0
Bandwidth 54400 MB/sec 73600 MB/sec
Texel Rate 17600 Mtexels/sec 25200 Mtexels/sec
Pixel Rate 4400 Mpixels/sec 11200 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of data (in units of MB per second) that can be transported over the external memory interface in one second. The number is worked out by multiplying the card's bus width by its memory speed. If the card has DDR type memory, it should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed in one second. This figure is calculated by multiplying the total amount of texture units by the core speed of the chip. The better the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip could possibly write to the local memory in one second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate is also dependant on many other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing