Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 260 vs GeForce GTX 460 (OEM)

Intro

The GeForce GTX 260 comes with a GPU clock speed of 576 MHz, and the 896 MB of GDDR3 RAM is set to run at 999 MHz through a 448-bit bus. It also features 192 Stream Processors, 64 Texture Address Units, and 28 Raster Operation Units.

Compare all that to the GeForce GTX 460 (OEM), which makes use of a 40 nm design. nVidia has clocked the core speed at 650 MHz. The GDDR5 memory is set to run at a speed of 850 MHz on this specific card. It features 336 SPUs along with 56 Texture Address Units and 32 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 460 (OEM) 150 Watts
GeForce GTX 260 182 Watts
Difference: 32 Watts (21%)

Memory Bandwidth

Performance-wise, the GeForce GTX 260 should theoretically be a little bit superior to the GeForce GTX 460 (OEM) overall. (explain)

GeForce GTX 260 111888 MB/sec
GeForce GTX 460 (OEM) 108800 MB/sec
Difference: 3088 (3%)

Texel Rate

The GeForce GTX 260 should be a little bit (approximately 1%) more effective at AF than the GeForce GTX 460 (OEM). (explain)

GeForce GTX 260 36864 Mtexels/sec
GeForce GTX 460 (OEM) 36400 Mtexels/sec
Difference: 464 (1%)

Pixel Rate

The GeForce GTX 460 (OEM) will be much (about 29%) better at full screen anti-aliasing than the GeForce GTX 260, and also will be able to handle higher screen resolutions better. (explain)

GeForce GTX 460 (OEM) 20800 Mpixels/sec
GeForce GTX 260 16128 Mpixels/sec
Difference: 4672 (29%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 260

Amazon.com

GeForce GTX 460 (OEM)

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 260 GeForce GTX 460 (OEM)
Manufacturer nVidia nVidia
Year June 16, 2008 October 2010
Code Name G200 GF104
Memory 896 MB 1024 MB
Core Speed 576 MHz 650 MHz
Memory Speed 1998 MHz 3400 MHz
Power (Max TDP) 182 watts 150 watts
Bandwidth 111888 MB/sec 108800 MB/sec
Texel Rate 36864 Mtexels/sec 36400 Mtexels/sec
Pixel Rate 16128 Mpixels/sec 20800 Mpixels/sec
Unified Shaders 192 336
Texture Mapping Units 64 56
Render Output Units 28 32
Bus Type GDDR3 GDDR5
Bus Width 448-bit 256-bit
Fab Process 65 nm 40 nm
Transistors 1400 million 1950 million
Bus PCIe x16 2.0 PCIe x16
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.1 OpenGL 4.1

Memory Bandwidth: Bandwidth is the maximum amount of data (measured in megabytes per second) that can be moved past the external memory interface within a second. The number is worked out by multiplying the card's interface width by the speed of its memory. If it uses DDR memory, it must be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The higher the memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied in one second. This is worked out by multiplying the total number of texture units of the card by the core clock speed of the chip. The better this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum number of pixels the graphics card could possibly write to its local memory per second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on quite a few other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]