Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 260 vs GeForce GTX 460 (OEM)

Intro

The GeForce GTX 260 features a GPU clock speed of 576 MHz, and the 896 MB of GDDR3 memory runs at 999 MHz through a 448-bit bus. It also is made up of 192 Stream Processors, 64 TAUs, and 28 Raster Operation Units.

Compare all of that to the GeForce GTX 460 (OEM), which has clock speeds of 650 MHz on the GPU, and 850 MHz on the 1024 MB of GDDR5 memory. It features 336 SPUs as well as 56 Texture Address Units and 32 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 460 (OEM) 150 Watts
GeForce GTX 260 182 Watts
Difference: 32 Watts (21%)

Memory Bandwidth

In theory, the GeForce GTX 260 will be 3% quicker than the GeForce GTX 460 (OEM) in general, because of its higher bandwidth. (explain)

GeForce GTX 260 111888 MB/sec
GeForce GTX 460 (OEM) 108800 MB/sec
Difference: 3088 (3%)

Texel Rate

The GeForce GTX 260 should be just a bit (more or less 1%) more effective at texture filtering than the GeForce GTX 460 (OEM). (explain)

GeForce GTX 260 36864 Mtexels/sec
GeForce GTX 460 (OEM) 36400 Mtexels/sec
Difference: 464 (1%)

Pixel Rate

The GeForce GTX 460 (OEM) is a lot (approximately 29%) more effective at anti-aliasing than the GeForce GTX 260, and also able to handle higher resolutions without losing too much performance. (explain)

GeForce GTX 460 (OEM) 20800 Mpixels/sec
GeForce GTX 260 16128 Mpixels/sec
Difference: 4672 (29%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 260

Amazon.com

GeForce GTX 460 (OEM)

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 260 GeForce GTX 460 (OEM)
Manufacturer nVidia nVidia
Year June 16, 2008 October 2010
Code Name G200 GF104
Fab Process 65 nm 40 nm
Bus PCIe x16 2.0 PCIe x16
Memory 896 MB 1024 MB
Core Speed 576 MHz 650 MHz
Shader Speed 1242 MHz 1300 MHz
Memory Speed 999 MHz (1998 MHz effective) 850 MHz (3400 MHz effective)
Unified Shaders 192 336
Texture Mapping Units 64 56
Render Output Units 28 32
Bus Type GDDR3 GDDR5
Bus Width 448-bit 256-bit
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.1 OpenGL 4.1
Power (Max TDP) 182 watts 150 watts
Shader Model 4.0 5.0
Bandwidth 111888 MB/sec 108800 MB/sec
Texel Rate 36864 Mtexels/sec 36400 Mtexels/sec
Pixel Rate 16128 Mpixels/sec 20800 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of information (measured in MB per second) that can be moved over the external memory interface in a second. It is worked out by multiplying the bus width by its memory clock speed. In the case of DDR type memory, it must be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the faster the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are processed in one second. This is calculated by multiplying the total texture units of the card by the core speed of the chip. The higher the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip can possibly write to its local memory per second - measured in millions of pixels per second. The number is worked out by multiplying the amount of Render Output Units by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate also depends on many other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree