Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 260 vs GeForce GTX 460 (OEM)

Intro

The GeForce GTX 260 has a core clock speed of 576 MHz and a GDDR3 memory frequency of 999 MHz. It also features a 448-bit memory bus, and makes use of a 65 nm design. It is comprised of 192 SPUs, 64 Texture Address Units, and 28 Raster Operation Units.

Compare all that to the GeForce GTX 460 (OEM), which features core clock speeds of 650 MHz on the GPU, and 850 MHz on the 1024 MB of GDDR5 RAM. It features 336 SPUs as well as 56 TAUs and 32 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 460 (OEM) 150 Watts
GeForce GTX 260 182 Watts
Difference: 32 Watts (21%)

Memory Bandwidth

The GeForce GTX 260 should theoretically perform a small bit faster than the GeForce GTX 460 (OEM) overall. (explain)

GeForce GTX 260 111888 MB/sec
GeForce GTX 460 (OEM) 108800 MB/sec
Difference: 3088 (3%)

Texel Rate

The GeForce GTX 260 will be a bit (more or less 1%) better at AF than the GeForce GTX 460 (OEM). (explain)

GeForce GTX 260 36864 Mtexels/sec
GeForce GTX 460 (OEM) 36400 Mtexels/sec
Difference: 464 (1%)

Pixel Rate

If using high levels of AA is important to you, then the GeForce GTX 460 (OEM) is superior to the GeForce GTX 260, by a large margin. (explain)

GeForce GTX 460 (OEM) 20800 Mpixels/sec
GeForce GTX 260 16128 Mpixels/sec
Difference: 4672 (29%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

GeForce GTX 260

Amazon.com

Other US-based stores

GeForce GTX 460 (OEM)

Amazon.com

Other US-based stores

Specifications

Model GeForce GTX 260 GeForce GTX 460 (OEM)
Manufacturer nVidia nVidia
Year June 16, 2008 October 2010
Code Name G200 GF104
Fab Process 65 nm 40 nm
Bus PCIe x16 2.0 PCIe x16
Memory 896 MB 1024 MB
Core Speed 576 MHz 650 MHz
Shader Speed 1242 MHz 1300 MHz
Memory Speed 999 MHz (1998 MHz effective) 850 MHz (3400 MHz effective)
Unified Shaders 192 336
Texture Mapping Units 64 56
Render Output Units 28 32
Bus Type GDDR3 GDDR5
Bus Width 448-bit 256-bit
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.1 OpenGL 4.1
Power (Max TDP) 182 watts 150 watts
Shader Model 4.0 5.0
Bandwidth 111888 MB/sec 108800 MB/sec
Texel Rate 36864 Mtexels/sec 36400 Mtexels/sec
Pixel Rate 16128 Mpixels/sec 20800 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of information (counted in megabytes per second) that can be moved past the external memory interface in a second. It is worked out by multiplying the card's bus width by its memory clock speed. If the card has DDR RAM, it must be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed per second. This number is worked out by multiplying the total amount of texture units by the core clock speed of the chip. The better the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card could possibly record to its local memory per second - measured in millions of pixels per second. The figure is calculated by multiplying the number of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate is also dependant on many other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree