Compare any two graphics cards:
VS

GeForce GT 430 1GB vs Radeon HD 4850 512MB

Intro

The GeForce GT 430 1GB features a GPU clock speed of 700 MHz, and the 1024 MB of GDDR3 RAM runs at 900 MHz through a 128-bit bus. It also features 96 SPUs, 16 TAUs, and 4 Raster Operation Units.

Compare those specs to the Radeon HD 4850 512MB, which makes use of a 55 nm design. AMD has set the core frequency at 625 MHz. The GDDR3 memory is set to run at a speed of 993 MHz on this particular model. It features 800(160x5) SPUs as well as 40 TAUs and 16 Rasterization Operator Units.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 430 1GB 60 Watts
Radeon HD 4850 512MB 110 Watts
Difference: 50 Watts (83%)

Memory Bandwidth

Theoretically, the Radeon HD 4850 512MB should be a lot faster than the GeForce GT 430 1GB in general. (explain)

Radeon HD 4850 512MB 63552 MB/sec
GeForce GT 430 1GB 28800 MB/sec
Difference: 34752 (121%)

Texel Rate

The Radeon HD 4850 512MB will be quite a bit (about 123%) faster with regards to AF than the GeForce GT 430 1GB. (explain)

Radeon HD 4850 512MB 25000 Mtexels/sec
GeForce GT 430 1GB 11200 Mtexels/sec
Difference: 13800 (123%)

Pixel Rate

If using high levels of AA is important to you, then the Radeon HD 4850 512MB is superior to the GeForce GT 430 1GB, by far. (explain)

Radeon HD 4850 512MB 10000 Mpixels/sec
GeForce GT 430 1GB 2800 Mpixels/sec
Difference: 7200 (257%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 430 1GB

Amazon.com

Radeon HD 4850 512MB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 430 1GB Radeon HD 4850 512MB
Manufacturer nVidia AMD
Year October 2010 Jun 25, 2008
Code Name GF108 RV770 PRO
Fab Process 40 nm 55 nm
Bus PCIe x16 PCIe 2.0 x16
Memory 1024 MB 512 MB
Core Speed 700 MHz 625 MHz
Shader Speed 1400 MHz (N/A) MHz
Memory Speed 1800 MHz 1986 MHz
Unified Shaders 96 800(160x5)
Texture Mapping Units 16 40
Render Output Units 4 16
Bus Type GDDR3 GDDR3
Bus Width 128-bit 256-bit
DirectX Version DirectX 11 DirectX 10.1
OpenGL Version OpenGL 4.1 OpenGL 3.0
Power (Max TDP) 60 watts 110 watts
Shader Model 5.0 4.1
Bandwidth 28800 MB/sec 63552 MB/sec
Texel Rate 11200 Mtexels/sec 25000 Mtexels/sec
Pixel Rate 2800 Mpixels/sec 10000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of information (in units of megabytes per second) that can be transferred over the external memory interface within a second. It's calculated by multiplying the bus width by its memory clock speed. If the card has DDR type memory, the result should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The better the memory bandwidth, the faster the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed per second. This number is calculated by multiplying the total texture units by the core clock speed of the chip. The higher this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip can possibly record to the local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the amount of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on lots of other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing