Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GT 1030 vs GeForce GT 340 1GB

Intro

The GeForce GT 1030 has a GPU clock speed of 1265 MHz, and the 2048 MB of GDDR5 RAM is set to run at 1502 MHz through a 64-bit bus. It also is comprised of 384 Stream Processors, 32 Texture Address Units, and 16 Raster Operation Units.

Compare that to the GeForce GT 340 1GB, which has a clock frequency of 550 MHz and a GDDR5 memory speed of 850 MHz. It also makes use of a 128-bit bus, and makes use of a 40 nm design. It features 96 SPUs, 32 TAUs, and 8 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 1030 30 Watts
GeForce GT 340 1GB 69 Watts
Difference: 39 Watts (130%)

Memory Bandwidth

The GeForce GT 340 1GB, in theory, should be a small bit faster than the GeForce GT 1030 in general. (explain)

GeForce GT 340 1GB 54400 MB/sec
GeForce GT 1030 49152 MB/sec
Difference: 5248 (11%)

Texel Rate

The GeForce GT 1030 should be quite a bit (about 130%) more effective at anisotropic filtering than the GeForce GT 340 1GB. (explain)

GeForce GT 1030 40480 Mtexels/sec
GeForce GT 340 1GB 17600 Mtexels/sec
Difference: 22880 (130%)

Pixel Rate

The GeForce GT 1030 should be a lot (more or less 360%) better at full screen anti-aliasing than the GeForce GT 340 1GB, and also capable of handling higher resolutions without slowing down too much. (explain)

GeForce GT 1030 20240 Mpixels/sec
GeForce GT 340 1GB 4400 Mpixels/sec
Difference: 15840 (360%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 1030

Amazon.com

Check prices at:

GeForce GT 340 1GB

Amazon.com

Check prices at:

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 1030 GeForce GT 340 1GB
Manufacturer nVidia nVidia
Year May 2017 February 2010
Code Name GP108-300 GT215
Memory 2048 MB 1024 MB
Core Speed 1265 MHz 550 MHz
Memory Speed 6008 MHz 3400 MHz
Power (Max TDP) 30 watts 69 watts
Bandwidth 49152 MB/sec 54400 MB/sec
Texel Rate 40480 Mtexels/sec 17600 Mtexels/sec
Pixel Rate 20240 Mpixels/sec 4400 Mpixels/sec
Unified Shaders 384 96
Texture Mapping Units 32 32
Render Output Units 16 8
Bus Type GDDR5 GDDR5
Bus Width 64-bit 128-bit
Fab Process 16 nm 40 nm
Transistors 3300 million 727 million
Bus PCIe 3.0 x16 PCIe x16
DirectX Version DirectX 12.0 DirectX 10.1
OpenGL Version OpenGL 4.5 OpenGL 3.3

Memory Bandwidth: Bandwidth is the maximum amount of information (in units of MB per second) that can be moved past the external memory interface within a second. The number is calculated by multiplying the card's bus width by its memory clock speed. In the case of DDR type memory, it must be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The higher the memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This number is worked out by multiplying the total number of texture units by the core clock speed of the chip. The better this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip can possibly write to the local memory in a second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate also depends on lots of other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to get to the maximum fill rate.

Display Prices

Hide Prices

GeForce GT 1030

Amazon.com

Check prices at:

GeForce GT 340 1GB

Amazon.com

Check prices at:

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


*

WordPress Anti Spam by WP-SpamShield