Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 9800 GTX vs Radeon HD 5550

Intro

The GeForce 9800 GTX features a GPU clock speed of 675 MHz, and the 512 MB of GDDR3 memory is set to run at 1100 MHz through a 256-bit bus. It also is made up of 128 SPUs, 64 Texture Address Units, and 16 ROPs.

Compare those specifications to the Radeon HD 5550, which makes use of a 40 nm design. AMD has clocked the core frequency at 550 MHz. The DDR2 RAM is set to run at a frequency of 400 MHz on this specific model. It features 320(64x5) SPUs along with 16 Texture Address Units and 8 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Memory Bandwidth

The GeForce 9800 GTX, in theory, should be quite a bit faster than the Radeon HD 5550 in general. (explain)

GeForce 9800 GTX 70400 MB/sec
Radeon HD 5550 12800 MB/sec
Difference: 57600 (450%)

Texel Rate

The GeForce 9800 GTX will be a lot (approximately 391%) more effective at anisotropic filtering than the Radeon HD 5550. (explain)

GeForce 9800 GTX 43200 Mtexels/sec
Radeon HD 5550 8800 Mtexels/sec
Difference: 34400 (391%)

Pixel Rate

The GeForce 9800 GTX will be a lot (approximately 145%) better at full screen anti-aliasing than the Radeon HD 5550, and also will be capable of handling higher screen resolutions more effectively. (explain)

GeForce 9800 GTX 10800 Mpixels/sec
Radeon HD 5550 4400 Mpixels/sec
Difference: 6400 (145%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9800 GTX

Amazon.com

Radeon HD 5550

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9800 GTX Radeon HD 5550
Manufacturer nVidia AMD
Year April 2008 February 9, 2010
Code Name G92 Redwood LE
Memory 512 MB 512 MB
Core Speed 675 MHz 550 MHz
Memory Speed 2200 MHz 800 MHz
Power (Max TDP) 140 watts (Unknown) watts
Bandwidth 70400 MB/sec 12800 MB/sec
Texel Rate 43200 Mtexels/sec 8800 Mtexels/sec
Pixel Rate 10800 Mpixels/sec 4400 Mpixels/sec
Unified Shaders 128 320(64x5)
Texture Mapping Units 64 16
Render Output Units 16 8
Bus Type GDDR3 DDR2
Bus Width 256-bit 128-bit
Fab Process 65 nm 40 nm
Transistors 754 million 627 million
Bus PCIe x16 2.0 PCIe 2.1 x16
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 3.2

Memory Bandwidth: Memory bandwidth is the largest amount of information (in units of megabytes per second) that can be transferred across the external memory interface within a second. The number is worked out by multiplying the bus width by the speed of its memory. If the card has DDR memory, it must be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are processed in one second. This figure is calculated by multiplying the total number of texture units of the card by the core clock speed of the chip. The higher the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card can possibly write to its local memory per second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on lots of other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]