Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce 9800 GTX vs Radeon HD 5550


The GeForce 9800 GTX has core speeds of 675 MHz on the GPU, and 1100 MHz on the 512 MB of GDDR3 RAM. It features 128 SPUs along with 64 TAUs and 16 Rasterization Operator Units.

Compare all that to the Radeon HD 5550, which makes use of a 40 nm design. AMD has clocked the core speed at 550 MHz. The DDR2 memory is set to run at a speed of 400 MHz on this specific card. It features 320(64x5) SPUs as well as 16 TAUs and 8 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Memory Bandwidth

Theoretically speaking, the GeForce 9800 GTX should perform much faster than the Radeon HD 5550 in general. (explain)

GeForce 9800 GTX 70400 MB/sec
Radeon HD 5550 12800 MB/sec
Difference: 57600 (450%)

Texel Rate

The GeForce 9800 GTX is a lot (more or less 391%) better at anisotropic filtering than the Radeon HD 5550. (explain)

GeForce 9800 GTX 43200 Mtexels/sec
Radeon HD 5550 8800 Mtexels/sec
Difference: 34400 (391%)

Pixel Rate

The GeForce 9800 GTX should be a lot (about 145%) more effective at anti-aliasing than the Radeon HD 5550, and able to handle higher resolutions more effectively. (explain)

GeForce 9800 GTX 10800 Mpixels/sec
Radeon HD 5550 4400 Mpixels/sec
Difference: 6400 (145%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9800 GTX

Radeon HD 5550

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce 9800 GTX Radeon HD 5550
Manufacturer nVidia AMD
Year April 2008 February 9, 2010
Code Name G92 Redwood LE
Memory 512 MB 512 MB
Core Speed 675 MHz 550 MHz
Memory Speed 2200 MHz 800 MHz
Power (Max TDP) 140 watts (Unknown) watts
Bandwidth 70400 MB/sec 12800 MB/sec
Texel Rate 43200 Mtexels/sec 8800 Mtexels/sec
Pixel Rate 10800 Mpixels/sec 4400 Mpixels/sec
Unified Shaders 128 320(64x5)
Texture Mapping Units 64 16
Render Output Units 16 8
Bus Type GDDR3 DDR2
Bus Width 256-bit 128-bit
Fab Process 65 nm 40 nm
Transistors 754 million 627 million
Bus PCIe x16 2.0 PCIe 2.1 x16
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 3.2

Memory Bandwidth: Memory bandwidth is the maximum amount of information (in units of MB per second) that can be moved over the external memory interface in one second. The number is worked out by multiplying the interface width by its memory speed. In the case of DDR RAM, it should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be processed in one second. This number is calculated by multiplying the total number of texture units by the core speed of the chip. The better this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip can possibly write to its local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of Raster Operations Pipelines by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate is also dependant on quite a few other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the potential to reach the maximum fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield