Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 8800 GT 512MB vs Radeon HD 4670 1GB

Intro

The GeForce 8800 GT 512MB features clock speeds of 600 MHz on the GPU, and 900 MHz on the 512 MB of GDDR3 RAM. It features 112 SPUs along with 56 TAUs and 16 ROPs.

Compare those specs to the Radeon HD 4670 1GB, which uses a 55 nm design. AMD has set the core speed at 750 MHz. The GDDR4/GDDR3/DDR3/DDR2 memory works at a speed of 1100 MHz on this particular model. It features 320(64x5) SPUs along with 32 Texture Address Units and 8 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 4670 1GB 70 Watts
GeForce 8800 GT 512MB 105 Watts
Difference: 35 Watts (50%)

Memory Bandwidth

Theoretically, the GeForce 8800 GT 512MB should be much faster than the Radeon HD 4670 1GB in general. (explain)

GeForce 8800 GT 512MB 57600 MB/sec
Radeon HD 4670 1GB 35200 MB/sec
Difference: 22400 (64%)

Texel Rate

The GeForce 8800 GT 512MB should be quite a bit (approximately 40%) more effective at anisotropic filtering than the Radeon HD 4670 1GB. (explain)

GeForce 8800 GT 512MB 33600 Mtexels/sec
Radeon HD 4670 1GB 24000 Mtexels/sec
Difference: 9600 (40%)

Pixel Rate

The GeForce 8800 GT 512MB will be quite a bit (approximately 60%) better at AA than the Radeon HD 4670 1GB, and also capable of handling higher screen resolutions without slowing down too much. (explain)

GeForce 8800 GT 512MB 9600 Mpixels/sec
Radeon HD 4670 1GB 6000 Mpixels/sec
Difference: 3600 (60%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 8800 GT 512MB

Amazon.com

Radeon HD 4670 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 8800 GT 512MB Radeon HD 4670 1GB
Manufacturer nVidia AMD
Year Oct 2007 Sep 10, 2008
Code Name G92 RV730 XT
Memory 512 MB 1024 MB
Core Speed 600 MHz 750 MHz
Memory Speed 1800 MHz 2200 MHz
Power (Max TDP) 105 watts 70 watts
Bandwidth 57600 MB/sec 35200 MB/sec
Texel Rate 33600 Mtexels/sec 24000 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 6000 Mpixels/sec
Unified Shaders 112 320(64x5)
Texture Mapping Units 56 32
Render Output Units 16 8
Bus Type GDDR3 GDDR4/GDDR3/DDR3/DDR2
Bus Width 256-bit 128-bit
Fab Process 65 nm 55 nm
Transistors 754 million 514 million
Bus PCIe x16 2.0 PCIe 2.0 x16, AGP 8x
DirectX Version DirectX 10 DirectX 10.1
OpenGL Version OpenGL 3.0 OpenGL 3.0

Memory Bandwidth: Memory bandwidth is the maximum amount of data (measured in MB per second) that can be transferred past the external memory interface in one second. It's calculated by multiplying the card's interface width by its memory clock speed. If it uses DDR RAM, it should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The better the bandwidth is, the better the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are processed per second. This figure is calculated by multiplying the total texture units of the card by the core clock speed of the chip. The better this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the most pixels that the graphics card could possibly record to its local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the amount of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on lots of other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]