Compare any two graphics cards:
VS

Geforce GTX 760 vs Radeon HD 4670 1GB

Intro

The Geforce GTX 760 comes with a GPU core clock speed of 980 MHz, and the 2048 MB of GDDR5 RAM is set to run at 1502 MHz through a 256-bit bus. It also features 1152 Stream Processors, 96 Texture Address Units, and 32 Raster Operation Units.

Compare all that to the Radeon HD 4670 1GB, which makes use of a 55 nm design. AMD has set the core frequency at 750 MHz. The GDDR4/GDDR3/DDR3/DDR2 RAM runs at a speed of 1100 MHz on this card. It features 320(64x5) SPUs along with 32 TAUs and 8 Rasterization Operator Units.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 4670 1GB 70 Watts
Geforce GTX 760 170 Watts
Difference: 100 Watts (143%)

Memory Bandwidth

The Geforce GTX 760, in theory, should perform much faster than the Radeon HD 4670 1GB in general. (explain)

Geforce GTX 760 192256 MB/sec
Radeon HD 4670 1GB 35200 MB/sec
Difference: 157056 (446%)

Texel Rate

The Geforce GTX 760 will be a lot (approximately 292%) better at texture filtering than the Radeon HD 4670 1GB. (explain)

Geforce GTX 760 94080 Mtexels/sec
Radeon HD 4670 1GB 24000 Mtexels/sec
Difference: 70080 (292%)

Pixel Rate

If using high levels of AA is important to you, then the Geforce GTX 760 is superior to the Radeon HD 4670 1GB, by far. (explain)

Geforce GTX 760 31360 Mpixels/sec
Radeon HD 4670 1GB 6000 Mpixels/sec
Difference: 25360 (423%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

Geforce GTX 760

Amazon.com

Radeon HD 4670 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model Geforce GTX 760 Radeon HD 4670 1GB
Manufacturer nVidia AMD
Year June 2013 Sep 10, 2008
Code Name GK104 RV730 XT
Fab Process 28 nm 55 nm
Bus PCIe 3.0 x16 PCIe 2.0 x16, AGP 8x
Memory 2048 MB 1024 MB
Core Speed 980 MHz 750 MHz
Shader Speed 980 MHz (N/A) MHz
Memory Speed 6008 MHz 2200 MHz
Unified Shaders 1152 320(64x5)
Texture Mapping Units 96 32
Render Output Units 32 8
Bus Type GDDR5 GDDR4/GDDR3/DDR3/DDR2
Bus Width 256-bit 128-bit
DirectX Version DirectX 11.0 DirectX 10.1
OpenGL Version OpenGL 4.3 OpenGL 3.0
Power (Max TDP) 170 watts 70 watts
Shader Model 5.0 4.1
Bandwidth 192256 MB/sec 35200 MB/sec
Texel Rate 94080 Mtexels/sec 24000 Mtexels/sec
Pixel Rate 31360 Mpixels/sec 6000 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of data (in units of megabytes per second) that can be moved over the external memory interface within a second. The number is calculated by multiplying the bus width by the speed of its memory. In the case of DDR RAM, the result should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be processed in one second. This number is worked out by multiplying the total number of texture units by the core speed of the chip. The higher the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card could possibly record to the local memory per second - measured in millions of pixels per second. The figure is worked out by multiplying the number of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on many other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing