Join Us On Facebook

Compare any two graphics cards:
VS

Geforce GTX 760 vs Radeon HD 4670 1GB

Intro

The Geforce GTX 760 has a core clock speed of 980 MHz and a GDDR5 memory speed of 1502 MHz. It also makes use of a 256-bit memory bus, and makes use of a 28 nm design. It is made up of 1152 SPUs, 96 Texture Address Units, and 32 ROPs.

Compare that to the Radeon HD 4670 1GB, which comes with a clock speed of 750 MHz and a GDDR4/GDDR3/DDR3/DDR2 memory frequency of 1100 MHz. It also makes use of a 128-bit memory bus, and makes use of a 55 nm design. It is made up of 320(64x5) SPUs, 32 Texture Address Units, and 8 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 4670 1GB 70 Watts
Geforce GTX 760 170 Watts
Difference: 100 Watts (143%)

Memory Bandwidth

Theoretically, the Geforce GTX 760 should perform a lot faster than the Radeon HD 4670 1GB overall. (explain)

Geforce GTX 760 192256 MB/sec
Radeon HD 4670 1GB 35200 MB/sec
Difference: 157056 (446%)

Texel Rate

The Geforce GTX 760 will be quite a bit (more or less 292%) faster with regards to texture filtering than the Radeon HD 4670 1GB. (explain)

Geforce GTX 760 94080 Mtexels/sec
Radeon HD 4670 1GB 24000 Mtexels/sec
Difference: 70080 (292%)

Pixel Rate

The Geforce GTX 760 should be quite a bit (about 423%) more effective at anti-aliasing than the Radeon HD 4670 1GB, and should be able to handle higher resolutions while still performing well. (explain)

Geforce GTX 760 31360 Mpixels/sec
Radeon HD 4670 1GB 6000 Mpixels/sec
Difference: 25360 (423%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

Geforce GTX 760

Amazon.com

Other US-based stores

Radeon HD 4670 1GB

Amazon.com

Other US-based stores

Specifications

Model Geforce GTX 760 Radeon HD 4670 1GB
Manufacturer nVidia ATi
Year June 2013 Sep 10, 2008
Code Name GK104 RV730 XT
Fab Process 28 nm 55 nm
Bus PCIe 3.0 x16 PCIe 2.0 x16, AGP 8x
Memory 2048 MB 1024 MB
Core Speed 980 MHz 750 MHz
Shader Speed 980 MHz (N/A) MHz
Memory Speed 1502 MHz (6008 MHz effective) 1100 MHz (2200 MHz effective)
Unified Shaders 1152 320(64x5)
Texture Mapping Units 96 32
Render Output Units 32 8
Bus Type GDDR5 GDDR4/GDDR3/DDR3/DDR2
Bus Width 256-bit 128-bit
DirectX Version DirectX 11.0 DirectX 10.1
OpenGL Version OpenGL 4.3 OpenGL 3.0
Power (Max TDP) 170 watts 70 watts
Shader Model 5.0 4.1
Bandwidth 192256 MB/sec 35200 MB/sec
Texel Rate 94080 Mtexels/sec 24000 Mtexels/sec
Pixel Rate 31360 Mpixels/sec 6000 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of information (counted in MB per second) that can be transported across the external memory interface in a second. The number is worked out by multiplying the bus width by its memory clock speed. If the card has DDR type memory, it must be multiplied by 2 again. If DDR5, multiply by 4 instead. The better the bandwidth is, the faster the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied per second. This is worked out by multiplying the total number of texture units of the card by the core clock speed of the chip. The better the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip can possibly write to the local memory per second - measured in millions of pixels per second. The figure is worked out by multiplying the number of ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on lots of other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree