Join Us On Facebook

Compare any two graphics cards:
VS

Geforce GTX 760 vs Radeon HD 4670 1GB

Intro

The Geforce GTX 760 comes with clock speeds of 980 MHz on the GPU, and 1502 MHz on the 2048 MB of GDDR5 memory. It features 1152 SPUs along with 96 Texture Address Units and 32 Rasterization Operator Units.

Compare that to the Radeon HD 4670 1GB, which comes with GPU clock speed of 750 MHz, and 1024 MB of GDDR4/GDDR3/DDR3/DDR2 memory running at 1100 MHz through a 128-bit bus. It also is made up of 320(64x5) SPUs, 32 Texture Address Units, and 8 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 4670 1GB 70 Watts
Geforce GTX 760 170 Watts
Difference: 100 Watts (143%)

Memory Bandwidth

Theoretically speaking, the Geforce GTX 760 is 446% faster than the Radeon HD 4670 1GB in general, due to its higher data rate. (explain)

Geforce GTX 760 192256 MB/sec
Radeon HD 4670 1GB 35200 MB/sec
Difference: 157056 (446%)

Texel Rate

The Geforce GTX 760 will be much (about 292%) faster with regards to AF than the Radeon HD 4670 1GB. (explain)

Geforce GTX 760 94080 Mtexels/sec
Radeon HD 4670 1GB 24000 Mtexels/sec
Difference: 70080 (292%)

Pixel Rate

If using high levels of AA is important to you, then the Geforce GTX 760 is the winner, by far. (explain)

Geforce GTX 760 31360 Mpixels/sec
Radeon HD 4670 1GB 6000 Mpixels/sec
Difference: 25360 (423%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Geforce GTX 760

Amazon.com

Radeon HD 4670 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Geforce GTX 760 Radeon HD 4670 1GB
Manufacturer nVidia AMD
Year June 2013 Sep 10, 2008
Code Name GK104 RV730 XT
Fab Process 28 nm 55 nm
Bus PCIe 3.0 x16 PCIe 2.0 x16, AGP 8x
Memory 2048 MB 1024 MB
Core Speed 980 MHz 750 MHz
Shader Speed 980 MHz (N/A) MHz
Memory Speed 1502 MHz (6008 MHz effective) 1100 MHz (2200 MHz effective)
Unified Shaders 1152 320(64x5)
Texture Mapping Units 96 32
Render Output Units 32 8
Bus Type GDDR5 GDDR4/GDDR3/DDR3/DDR2
Bus Width 256-bit 128-bit
DirectX Version DirectX 11.0 DirectX 10.1
OpenGL Version OpenGL 4.3 OpenGL 3.0
Power (Max TDP) 170 watts 70 watts
Shader Model 5.0 4.1
Bandwidth 192256 MB/sec 35200 MB/sec
Texel Rate 94080 Mtexels/sec 24000 Mtexels/sec
Pixel Rate 31360 Mpixels/sec 6000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (measured in megabytes per second) that can be transported past the external memory interface in one second. It's calculated by multiplying the card's bus width by the speed of its memory. In the case of DDR RAM, it should be multiplied by 2 again. If DDR5, multiply by 4 instead. The higher the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied per second. This figure is worked out by multiplying the total number of texture units by the core speed of the chip. The better the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the most pixels the graphics card can possibly record to its local memory in a second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate also depends on lots of other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree