Join Us On Facebook

Compare any two graphics cards:
VS

Geforce GTX 770 vs Radeon HD 7870

Intro

The Geforce GTX 770 uses a 28 nm design. nVidia has clocked the core frequency at 1046 MHz. The GDDR5 memory is set to run at a speed of 1753 MHz on this particular model. It features 1536 SPUs along with 128 TAUs and 32 ROPs.

Compare all that to the Radeon HD 7870, which comes with GPU core speed of 1000 MHz, and 2048 MB of GDDR5 RAM running at 1200 MHz through a 256-bit bus. It also features 1280 Stream Processors, 80 Texture Address Units, and 32 Raster Operation Units.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7870 175 Watts
Geforce GTX 770 230 Watts
Difference: 55 Watts (31%)

Memory Bandwidth

The Geforce GTX 770 should in theory be much faster than the Radeon HD 7870 overall. (explain)

Geforce GTX 770 224384 MB/sec
Radeon HD 7870 153600 MB/sec
Difference: 70784 (46%)

Texel Rate

The Geforce GTX 770 should be quite a bit (more or less 67%) faster with regards to texture filtering than the Radeon HD 7870. (explain)

Geforce GTX 770 133888 Mtexels/sec
Radeon HD 7870 80000 Mtexels/sec
Difference: 53888 (67%)

Pixel Rate

The Geforce GTX 770 will be just a bit (about 5%) more effective at FSAA than the Radeon HD 7870, and will be capable of handling higher resolutions while still performing well. (explain)

Geforce GTX 770 33472 Mpixels/sec
Radeon HD 7870 32000 Mpixels/sec
Difference: 1472 (5%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

Geforce GTX 770

Amazon.com

Radeon HD 7870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model Geforce GTX 770 Radeon HD 7870
Manufacturer nVidia AMD
Year May 2013 March 2012
Code Name GK104 Pitcairn XT
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 2048 MB 2048 MB
Core Speed 1046 MHz 1000 MHz
Shader Speed 1046 MHz (N/A) MHz
Memory Speed 1753 MHz (7012 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 1536 1280
Texture Mapping Units 128 80
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
DirectX Version DirectX 11.0 DirectX 11.1
OpenGL Version OpenGL 4.3 OpenGL 4.2
Power (Max TDP) 230 watts 175 watts
Shader Model 5.0 5.0
Bandwidth 224384 MB/sec 153600 MB/sec
Texel Rate 133888 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 33472 Mpixels/sec 32000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (in units of MB per second) that can be moved past the external memory interface within a second. It is calculated by multiplying the card's bus width by the speed of its memory. If it uses DDR type RAM, the result should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be processed per second. This number is worked out by multiplying the total amount of texture units of the card by the core speed of the chip. The higher the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card could possibly record to its local memory in a second - measured in millions of pixels per second. The number is worked out by multiplying the number of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on lots of other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing