Join Us On Facebook

Compare any two graphics cards:
VS

Geforce GTX 770 vs Radeon HD 7870

Intro

The Geforce GTX 770 comes with a core clock speed of 1046 MHz and a GDDR5 memory speed of 1753 MHz. It also makes use of a 256-bit bus, and makes use of a 28 nm design. It is made up of 1536 SPUs, 128 TAUs, and 32 Raster Operation Units.

Compare all that to the Radeon HD 7870, which makes use of a 28 nm design. AMD has clocked the core speed at 1000 MHz. The GDDR5 RAM runs at a speed of 1200 MHz on this specific card. It features 1280 SPUs along with 80 Texture Address Units and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7870 175 Watts
Geforce GTX 770 230 Watts
Difference: 55 Watts (31%)

Memory Bandwidth

The Geforce GTX 770, in theory, should perform a lot faster than the Radeon HD 7870 overall. (explain)

Geforce GTX 770 224384 MB/sec
Radeon HD 7870 153600 MB/sec
Difference: 70784 (46%)

Texel Rate

The Geforce GTX 770 is much (about 67%) better at anisotropic filtering than the Radeon HD 7870. (explain)

Geforce GTX 770 133888 Mtexels/sec
Radeon HD 7870 80000 Mtexels/sec
Difference: 53888 (67%)

Pixel Rate

The Geforce GTX 770 is just a bit (more or less 5%) better at anti-aliasing than the Radeon HD 7870, and should be capable of handling higher resolutions without losing too much performance. (explain)

Geforce GTX 770 33472 Mpixels/sec
Radeon HD 7870 32000 Mpixels/sec
Difference: 1472 (5%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Geforce GTX 770

Amazon.com

Radeon HD 7870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Geforce GTX 770 Radeon HD 7870
Manufacturer nVidia AMD
Year May 2013 March 2012
Code Name GK104 Pitcairn XT
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 2048 MB 2048 MB
Core Speed 1046 MHz 1000 MHz
Shader Speed 1046 MHz (N/A) MHz
Memory Speed 1753 MHz (7012 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 1536 1280
Texture Mapping Units 128 80
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
DirectX Version DirectX 11.0 DirectX 11.1
OpenGL Version OpenGL 4.3 OpenGL 4.2
Power (Max TDP) 230 watts 175 watts
Shader Model 5.0 5.0
Bandwidth 224384 MB/sec 153600 MB/sec
Texel Rate 133888 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 33472 Mpixels/sec 32000 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of information (in units of megabytes per second) that can be moved past the external memory interface in one second. It is worked out by multiplying the bus width by the speed of its memory. In the case of DDR RAM, it must be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed in one second. This figure is calculated by multiplying the total texture units of the card by the core speed of the chip. The higher the texel rate, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card could possibly write to the local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of Render Output Units by the the core clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate is also dependant on lots of other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing