Join Us On Facebook

Compare any two graphics cards:
VS

Geforce GTX 770 vs Radeon HD 7870

Intro

The Geforce GTX 770 uses a 28 nm design. nVidia has clocked the core frequency at 1046 MHz. The GDDR5 memory works at a frequency of 1753 MHz on this specific card. It features 1536 SPUs along with 128 Texture Address Units and 32 ROPs.

Compare that to the Radeon HD 7870, which uses a 28 nm design. ATi has set the core frequency at 1000 MHz. The GDDR5 memory works at a frequency of 1200 MHz on this card. It features 1280 SPUs as well as 80 TAUs and 32 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7870 175 Watts
Geforce GTX 770 230 Watts
Difference: 55 Watts (31%)

Memory Bandwidth

As far as performance goes, the Geforce GTX 770 should in theory be quite a bit superior to the Radeon HD 7870 in general. (explain)

Geforce GTX 770 224384 MB/sec
Radeon HD 7870 153600 MB/sec
Difference: 70784 (46%)

Texel Rate

The Geforce GTX 770 should be much (more or less 67%) better at AF than the Radeon HD 7870. (explain)

Geforce GTX 770 133888 Mtexels/sec
Radeon HD 7870 80000 Mtexels/sec
Difference: 53888 (67%)

Pixel Rate

The Geforce GTX 770 should be a bit (more or less 5%) faster with regards to FSAA than the Radeon HD 7870, and will be able to handle higher resolutions without losing too much performance. (explain)

Geforce GTX 770 33472 Mpixels/sec
Radeon HD 7870 32000 Mpixels/sec
Difference: 1472 (5%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

Geforce GTX 770

Amazon.com

Other US-based stores

Radeon HD 7870

Amazon.com

Other US-based stores

Specifications

Model Geforce GTX 770 Radeon HD 7870
Manufacturer nVidia ATi
Year May 2013 March 2012
Code Name GK104 Pitcairn XT
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 2048 MB 2048 MB
Core Speed 1046 MHz 1000 MHz
Shader Speed 1046 MHz (N/A) MHz
Memory Speed 1753 MHz (7012 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 1536 1280
Texture Mapping Units 128 80
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
DirectX Version DirectX 11.0 DirectX 11.1
OpenGL Version OpenGL 4.3 OpenGL 4.2
Power (Max TDP) 230 watts 175 watts
Shader Model 5.0 5.0
Bandwidth 224384 MB/sec 153600 MB/sec
Texel Rate 133888 Mtexels/sec 80000 Mtexels/sec
Pixel Rate 33472 Mpixels/sec 32000 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of information (in units of MB per second) that can be moved past the external memory interface within a second. The number is calculated by multiplying the bus width by its memory speed. If the card has DDR type RAM, it must be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The higher the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed per second. This is calculated by multiplying the total number of texture units by the core speed of the chip. The higher this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card could possibly record to the local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate also depends on many other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree