Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

Geforce GTX 780 vs Radeon HD 5870

Intro

The Geforce GTX 780 comes with core speeds of 863 MHz on the GPU, and 1502 MHz on the 3072 MB of GDDR5 memory. It features 2304 SPUs as well as 192 TAUs and 48 ROPs.

Compare that to the Radeon HD 5870, which has clock speeds of 850 MHz on the GPU, and 1200 MHz on the 1024 MB of GDDR5 memory. It features 1600(320x5) SPUs as well as 80 TAUs and 32 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5870 188 Watts
Geforce GTX 780 250 Watts
Difference: 62 Watts (33%)

Memory Bandwidth

The Geforce GTX 780, in theory, should perform quite a bit faster than the Radeon HD 5870 overall. (explain)

Geforce GTX 780 288384 MB/sec
Radeon HD 5870 153600 MB/sec
Difference: 134784 (88%)

Texel Rate

The Geforce GTX 780 should be much (about 144%) faster with regards to texture filtering than the Radeon HD 5870. (explain)

Geforce GTX 780 165696 Mtexels/sec
Radeon HD 5870 68000 Mtexels/sec
Difference: 97696 (144%)

Pixel Rate

The Geforce GTX 780 will be much (about 52%) faster with regards to AA than the Radeon HD 5870, and able to handle higher resolutions without losing too much performance. (explain)

Geforce GTX 780 41424 Mpixels/sec
Radeon HD 5870 27200 Mpixels/sec
Difference: 14224 (52%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

Geforce GTX 780

Amazon.com

Radeon HD 5870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model Geforce GTX 780 Radeon HD 5870
Manufacturer nVidia AMD
Year May 2013 September 23, 2009
Code Name GK110 Cypress XT
Memory 3072 MB 1024 MB
Core Speed 863 MHz 850 MHz
Memory Speed 6008 MHz 4800 MHz
Power (Max TDP) 250 watts 188 watts
Bandwidth 288384 MB/sec 153600 MB/sec
Texel Rate 165696 Mtexels/sec 68000 Mtexels/sec
Pixel Rate 41424 Mpixels/sec 27200 Mpixels/sec
Unified Shaders 2304 1600(320x5)
Texture Mapping Units 192 80
Render Output Units 48 32
Bus Type GDDR5 GDDR5
Bus Width 384-bit 256-bit
Fab Process 28 nm 40 nm
Transistors 7080 million 2154 million
Bus PCIe 3.0 x16 PCIe 2.1 x16
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.3 OpenGL 3.2

Memory Bandwidth: Memory bandwidth is the maximum amount of data (in units of MB per second) that can be transferred over the external memory interface within a second. It is worked out by multiplying the interface width by its memory clock speed. If it uses DDR memory, it must be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied in one second. This number is worked out by multiplying the total number of texture units by the core clock speed of the chip. The better the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card can possibly write to its local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the number of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on many other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]