Join Us On Facebook

Compare any two graphics cards:
VS

Geforce GTX 780 vs Radeon HD 5870

Intro

The Geforce GTX 780 features a core clock speed of 863 MHz and a GDDR5 memory frequency of 1502 MHz. It also uses a 384-bit memory bus, and makes use of a 28 nm design. It is made up of 2304 SPUs, 192 TAUs, and 48 Raster Operation Units.

Compare that to the Radeon HD 5870, which comes with a clock frequency of 850 MHz and a GDDR5 memory frequency of 1200 MHz. It also makes use of a 256-bit bus, and uses a 40 nm design. It features 1600(320x5) SPUs, 80 TAUs, and 32 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 5870 188 Watts
Geforce GTX 780 250 Watts
Difference: 62 Watts (33%)

Memory Bandwidth

Performance-wise, the Geforce GTX 780 should in theory be quite a bit better than the Radeon HD 5870 in general. (explain)

Geforce GTX 780 288384 MB/sec
Radeon HD 5870 153600 MB/sec
Difference: 134784 (88%)

Texel Rate

The Geforce GTX 780 will be a lot (about 144%) better at anisotropic filtering than the Radeon HD 5870. (explain)

Geforce GTX 780 165696 Mtexels/sec
Radeon HD 5870 68000 Mtexels/sec
Difference: 97696 (144%)

Pixel Rate

If using a high screen resolution is important to you, then the Geforce GTX 780 is the winner, and very much so. (explain)

Geforce GTX 780 41424 Mpixels/sec
Radeon HD 5870 27200 Mpixels/sec
Difference: 14224 (52%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Geforce GTX 780

Amazon.com

Radeon HD 5870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Geforce GTX 780 Radeon HD 5870
Manufacturer nVidia AMD
Year May 2013 September 23, 2009
Code Name GK110 Cypress XT
Fab Process 28 nm 40 nm
Bus PCIe 3.0 x16 PCIe 2.1 x16
Memory 3072 MB 1024 MB
Core Speed 863 MHz 850 MHz
Shader Speed 863 MHz (N/A) MHz
Memory Speed 1502 MHz (6008 MHz effective) 1200 MHz (4800 MHz effective)
Unified Shaders 2304 1600(320x5)
Texture Mapping Units 192 80
Render Output Units 48 32
Bus Type GDDR5 GDDR5
Bus Width 384-bit 256-bit
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.3 OpenGL 3.2
Power (Max TDP) 250 watts 188 watts
Shader Model 5.0 5.0
Bandwidth 288384 MB/sec 153600 MB/sec
Texel Rate 165696 Mtexels/sec 68000 Mtexels/sec
Pixel Rate 41424 Mpixels/sec 27200 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of data (measured in megabytes per second) that can be moved across the external memory interface within a second. The number is calculated by multiplying the bus width by its memory clock speed. If the card has DDR memory, it must be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the faster the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied per second. This is calculated by multiplying the total texture units by the core speed of the chip. The higher the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card could possibly record to the local memory in one second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of Render Output Units by the the core speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate also depends on lots of other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree