Join Us On Facebook

Compare any two graphics cards:
VS

Geforce GTX 780 vs Radeon HD 7950

Intro

The Geforce GTX 780 features a GPU clock speed of 863 MHz, and the 3072 MB of GDDR5 RAM runs at 1502 MHz through a 384-bit bus. It also is comprised of 2304 Stream Processors, 192 Texture Address Units, and 48 ROPs.

Compare those specs to the Radeon HD 7950, which has a core clock frequency of 800 MHz and a GDDR5 memory frequency of 1250 MHz. It also makes use of a 384-bit memory bus, and makes use of a 28 nm design. It features 1792 SPUs, 112 Texture Address Units, and 32 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7950 200 Watts
Geforce GTX 780 250 Watts
Difference: 50 Watts (25%)

Memory Bandwidth

Theoretically speaking, the Geforce GTX 780 will be 20% quicker than the Radeon HD 7950 in general, due to its higher bandwidth. (explain)

Geforce GTX 780 288384 MB/sec
Radeon HD 7950 240000 MB/sec
Difference: 48384 (20%)

Texel Rate

The Geforce GTX 780 will be quite a bit (more or less 85%) better at AF than the Radeon HD 7950. (explain)

Geforce GTX 780 165696 Mtexels/sec
Radeon HD 7950 89600 Mtexels/sec
Difference: 76096 (85%)

Pixel Rate

The Geforce GTX 780 will be quite a bit (more or less 62%) better at AA than the Radeon HD 7950, and also will be capable of handling higher resolutions without slowing down too much. (explain)

Geforce GTX 780 41424 Mpixels/sec
Radeon HD 7950 25600 Mpixels/sec
Difference: 15824 (62%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Geforce GTX 780

Amazon.com

Radeon HD 7950

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Geforce GTX 780 Radeon HD 7950
Manufacturer nVidia AMD
Year May 2013 January 2012
Code Name GK110 Tahiti Pro
Fab Process 28 nm 28 nm
Bus PCIe 3.0 x16 PCIe 3.0 x16
Memory 3072 MB 1536 MB
Core Speed 863 MHz 800 MHz
Shader Speed 863 MHz (N/A) MHz
Memory Speed 1502 MHz (6008 MHz effective) 1250 MHz (5000 MHz effective)
Unified Shaders 2304 1792
Texture Mapping Units 192 112
Render Output Units 48 32
Bus Type GDDR5 GDDR5
Bus Width 384-bit 384-bit
DirectX Version DirectX 11.0 DirectX 11.1
OpenGL Version OpenGL 4.3 OpenGL 4.2
Power (Max TDP) 250 watts 200 watts
Shader Model 5.0 5.0
Bandwidth 288384 MB/sec 240000 MB/sec
Texel Rate 165696 Mtexels/sec 89600 Mtexels/sec
Pixel Rate 41424 Mpixels/sec 25600 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of information (counted in megabytes per second) that can be transported past the external memory interface within a second. The number is worked out by multiplying the card's bus width by its memory speed. In the case of DDR type RAM, it should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied per second. This number is calculated by multiplying the total number of texture units by the core clock speed of the chip. The better the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the most pixels the graphics card can possibly record to its local memory in a second - measured in millions of pixels per second. The number is worked out by multiplying the number of Render Output Units by the clock speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate also depends on lots of other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree