Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 295 vs GeForce GTX Titan


Intro

The GeForce GTX 295 has a GPU clock speed of 576 MHz, and the 896 MB of GDDR3 memory runs at 999 MHz through a 448-bit bus. It also is comprised of 240 SPUs, 80 TAUs, and 28 ROPs.

Compare those specs to the GeForce GTX Titan, which makes use of a 28 nm design. nVidia has set the core frequency at 837 MHz. The GDDR5 RAM works at a speed of 1502 MHz on this specific card. It features 2688 SPUs as well as 224 Texture Address Units and 48 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX Titan 250 Watts
GeForce GTX 295 289 Watts
Difference: 39 Watts (16%)

Memory Bandwidth

Performance-wise, the GeForce GTX Titan should in theory be quite a bit better than the GeForce GTX 295 in general. (explain)

GeForce GTX Titan 288384 MB/sec
GeForce GTX 295 223776 MB/sec
Difference: 64608 (29%)

Texel Rate

The GeForce GTX Titan is quite a bit (more or less 103%) faster with regards to anisotropic filtering than the GeForce GTX 295. (explain)

GeForce GTX Titan 187488 Mtexels/sec
GeForce GTX 295 92160 Mtexels/sec
Difference: 95328 (103%)

Pixel Rate

If using lots of anti-aliasing is important to you, then the GeForce GTX Titan is a better choice, and very much so. (explain)

GeForce GTX Titan 40176 Mpixels/sec
GeForce GTX 295 32256 Mpixels/sec
Difference: 7920 (25%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

One or more cards in this comparison are multi-core. This means that their bandwidth, texel and pixel rates are theoretically doubled - this does not mean the card will actually perform twice as fast, but only that it should in theory be able to. Actual game benchmarks will give a more accurate idea of what it's capable of.

Price Comparison

GeForce GTX 295

GeForce GTX Titan

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 295 GeForce GTX Titan
Manufacturer nVidia nVidia
Year January 8, 2009 February 2013
Code Name G200b GK110
Memory 896 MB (x2) 6144 MB
Core Speed 576 MHz (x2) 837 MHz
Memory Speed 1998 MHz (x2) 6008 MHz
Power (Max TDP) 289 watts 250 watts
Bandwidth 223776 MB/sec 288384 MB/sec
Texel Rate 92160 Mtexels/sec 187488 Mtexels/sec
Pixel Rate 32256 Mpixels/sec 40176 Mpixels/sec
Unified Shaders 240 (x2) 2688
Texture Mapping Units 80 (x2) 224
Render Output Units 28 (x2) 48
Bus Type GDDR3 GDDR5
Bus Width 448-bit (x2) 384-bit
Fab Process 55 nm 28 nm
Transistors 1400 million 7080 million
Bus PCIe x16 2.0 PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.1 OpenGL 4.3

Memory Bandwidth: Memory bandwidth is the max amount of information (measured in megabytes per second) that can be moved past the external memory interface in a second. It is calculated by multiplying the card's interface width by the speed of its memory. If it uses DDR RAM, it should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed in one second. This figure is worked out by multiplying the total number of texture units by the core speed of the chip. The better the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip can possibly write to its local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on many other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the ability to reach the max fill rate.

GeForce GTX 295

GeForce GTX Titan

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


*

WordPress Anti-Spam by WP-SpamShield


[X]
[X]