Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 295 vs GeForce GTX Titan

Intro

The GeForce GTX 295 makes use of a 55 nm design. nVidia has set the core frequency at 576 MHz. The GDDR3 memory is set to run at a speed of 999 MHz on this specific card. It features 240 SPUs along with 80 Texture Address Units and 28 ROPs.

Compare that to the GeForce GTX Titan, which uses a 28 nm design. nVidia has set the core frequency at 837 MHz. The GDDR5 memory is set to run at a frequency of 1502 MHz on this specific card. It features 2688 SPUs as well as 224 TAUs and 48 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX Titan 250 Watts
GeForce GTX 295 289 Watts
Difference: 39 Watts (16%)

Memory Bandwidth

Performance-wise, the GeForce GTX Titan should theoretically be much superior to the GeForce GTX 295 overall. (explain)

GeForce GTX Titan 288384 MB/sec
GeForce GTX 295 223776 MB/sec
Difference: 64608 (29%)

Texel Rate

The GeForce GTX Titan should be much (approximately 103%) more effective at AF than the GeForce GTX 295. (explain)

GeForce GTX Titan 187488 Mtexels/sec
GeForce GTX 295 92160 Mtexels/sec
Difference: 95328 (103%)

Pixel Rate

The GeForce GTX Titan is quite a bit (approximately 25%) faster with regards to full screen anti-aliasing than the GeForce GTX 295, and also will be able to handle higher resolutions while still performing well. (explain)

GeForce GTX Titan 40176 Mpixels/sec
GeForce GTX 295 32256 Mpixels/sec
Difference: 7920 (25%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

One or more cards in this comparison are multi-core. This means that their bandwidth, texel and pixel rates are theoretically doubled - this does not mean the card will actually perform twice as fast, but only that it should in theory be able to. Actual game benchmarks will give a more accurate idea of what it's capable of.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

GeForce GTX 295

Amazon.com

Other US-based stores

GeForce GTX Titan

Amazon.com

Other US-based stores

Specifications

Model GeForce GTX 295 GeForce GTX Titan
Manufacturer nVidia nVidia
Year January 8, 2009 February 2013
Code Name G200b GK110
Fab Process 55 nm 28 nm
Bus PCIe x16 2.0 PCIe 3.0 x16
Memory 896 MB (x2) 6144 MB
Core Speed 576 MHz (x2) 837 MHz
Shader Speed 1242 MHz (x2) 837 MHz
Memory Speed 999 MHz (1998 MHz effective) (x2) 1502 MHz (6008 MHz effective)
Unified Shaders 240 (x2) 2688
Texture Mapping Units 80 (x2) 224
Render Output Units 28 (x2) 48
Bus Type GDDR3 GDDR5
Bus Width 448-bit (x2) 384-bit
DirectX Version DirectX 10 DirectX 11.1
OpenGL Version OpenGL 3.1 OpenGL 4.3
Power (Max TDP) 289 watts 250 watts
Shader Model 4.0 5.0
Bandwidth 223776 MB/sec 288384 MB/sec
Texel Rate 92160 Mtexels/sec 187488 Mtexels/sec
Pixel Rate 32256 Mpixels/sec 40176 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of information (measured in megabytes per second) that can be moved past the external memory interface in a second. It's worked out by multiplying the card's interface width by its memory clock speed. If the card has DDR RAM, it must be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied in one second. This figure is worked out by multiplying the total number of texture units by the core speed of the chip. The better the texel rate, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the most pixels the video card can possibly record to the local memory per second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate is also dependant on many other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree