Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce GTX 295 vs GeForce GTX Titan


The GeForce GTX 295 features a core clock speed of 576 MHz and a GDDR3 memory frequency of 999 MHz. It also features a 448-bit memory bus, and makes use of a 55 nm design. It is comprised of 240 SPUs, 80 Texture Address Units, and 28 ROPs.

Compare that to the GeForce GTX Titan, which comes with clock speeds of 837 MHz on the GPU, and 1502 MHz on the 6144 MB of GDDR5 RAM. It features 2688 SPUs as well as 224 Texture Address Units and 48 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX Titan 250 Watts
GeForce GTX 295 289 Watts
Difference: 39 Watts (16%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX Titan should perform much faster than the GeForce GTX 295 in general. (explain)

GeForce GTX Titan 288384 MB/sec
GeForce GTX 295 223776 MB/sec
Difference: 64608 (29%)

Texel Rate

The GeForce GTX Titan is a lot (approximately 103%) more effective at texture filtering than the GeForce GTX 295. (explain)

GeForce GTX Titan 187488 Mtexels/sec
GeForce GTX 295 92160 Mtexels/sec
Difference: 95328 (103%)

Pixel Rate

The GeForce GTX Titan will be quite a bit (about 25%) faster with regards to anti-aliasing than the GeForce GTX 295, and also should be capable of handling higher resolutions more effectively. (explain)

GeForce GTX Titan 40176 Mpixels/sec
GeForce GTX 295 32256 Mpixels/sec
Difference: 7920 (25%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

One or more cards in this comparison are multi-core. This means that their bandwidth, texel and pixel rates are theoretically doubled - this does not mean the card will actually perform twice as fast, but only that it should in theory be able to. Actual game benchmarks will give a more accurate idea of what it's capable of.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 295

GeForce GTX Titan

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce GTX 295 GeForce GTX Titan
Manufacturer nVidia nVidia
Year January 8, 2009 February 2013
Code Name G200b GK110
Memory 896 MB (x2) 6144 MB
Core Speed 576 MHz (x2) 837 MHz
Memory Speed 1998 MHz (x2) 6008 MHz
Power (Max TDP) 289 watts 250 watts
Bandwidth 223776 MB/sec 288384 MB/sec
Texel Rate 92160 Mtexels/sec 187488 Mtexels/sec
Pixel Rate 32256 Mpixels/sec 40176 Mpixels/sec
Unified Shaders 240 (x2) 2688
Texture Mapping Units 80 (x2) 224
Render Output Units 28 (x2) 48
Bus Type GDDR3 GDDR5
Bus Width 448-bit (x2) 384-bit
Fab Process 55 nm 28 nm
Transistors 1400 million 7080 million
Bus PCIe x16 2.0 PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.1 OpenGL 4.3

Memory Bandwidth: Bandwidth is the maximum amount of data (in units of MB per second) that can be transferred past the external memory interface in one second. The number is worked out by multiplying the card's interface width by the speed of its memory. If the card has DDR type RAM, the result should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The better the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are processed in one second. This is calculated by multiplying the total texture units by the core speed of the chip. The better this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card can possibly write to the local memory in a second - measured in millions of pixels per second. The number is calculated by multiplying the amount of Raster Operations Pipelines by the clock speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate is also dependant on lots of other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield