Compare any two graphics cards:
VS

GeForce GTX 570 vs GeForce GTX 650 Ti

Intro

The GeForce GTX 570 comes with clock speeds of 732 MHz on the GPU, and 950 MHz on the 1280 MB of GDDR5 RAM. It features 480 SPUs as well as 60 Texture Address Units and 40 ROPs.

Compare those specs to the GeForce GTX 650 Ti, which has core clock speeds of 928 MHz on the GPU, and 1350 MHz on the 1024 MB of GDDR5 RAM. It features 768 SPUs along with 64 TAUs and 16 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 Ti 110 Watts
GeForce GTX 570 219 Watts
Difference: 109 Watts (99%)

Memory Bandwidth

The GeForce GTX 570, in theory, should perform a lot faster than the GeForce GTX 650 Ti in general. (explain)

GeForce GTX 570 152000 MB/sec
GeForce GTX 650 Ti 86400 MB/sec
Difference: 65600 (76%)

Texel Rate

The GeForce GTX 650 Ti will be much (approximately 35%) more effective at texture filtering than the GeForce GTX 570. (explain)

GeForce GTX 650 Ti 59392 Mtexels/sec
GeForce GTX 570 43920 Mtexels/sec
Difference: 15472 (35%)

Pixel Rate

The GeForce GTX 570 is much (about 97%) more effective at FSAA than the GeForce GTX 650 Ti, and also will be capable of handling higher screen resolutions without slowing down too much. (explain)

GeForce GTX 570 29280 Mpixels/sec
GeForce GTX 650 Ti 14848 Mpixels/sec
Difference: 14432 (97%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 570

Amazon.com

GeForce GTX 650 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 570 GeForce GTX 650 Ti
Manufacturer nVidia nVidia
Year December 2010 October 2012
Code Name GF110 GK106
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1280 MB 1024 MB
Core Speed 732 MHz 928 MHz
Shader Speed 1464 MHz 928 MHz
Memory Speed 3800 MHz 5400 MHz
Unified Shaders 480 768
Texture Mapping Units 60 64
Render Output Units 40 16
Bus Type GDDR5 GDDR5
Bus Width 320-bit 128-bit
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3
Power (Max TDP) 219 watts 110 watts
Shader Model 5.0 5.0
Bandwidth 152000 MB/sec 86400 MB/sec
Texel Rate 43920 Mtexels/sec 59392 Mtexels/sec
Pixel Rate 29280 Mpixels/sec 14848 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of data (measured in MB per second) that can be moved past the external memory interface within a second. The number is calculated by multiplying the bus width by its memory clock speed. In the case of DDR type RAM, it should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied in one second. This is worked out by multiplying the total number of texture units of the card by the core speed of the chip. The better this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card can possibly record to its local memory per second - measured in millions of pixels per second. The number is calculated by multiplying the amount of Render Output Units by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate also depends on many other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing