Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce GTX 570 vs GeForce GTX 650 Ti


The GeForce GTX 570 comes with a core clock speed of 732 MHz and a GDDR5 memory frequency of 950 MHz. It also makes use of a 320-bit memory bus, and uses a 40 nm design. It features 480 SPUs, 60 TAUs, and 40 ROPs.

Compare those specs to the GeForce GTX 650 Ti, which makes use of a 28 nm design. nVidia has set the core speed at 928 MHz. The GDDR5 RAM works at a speed of 1350 MHz on this card. It features 768 SPUs as well as 64 TAUs and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 Ti 110 Watts
GeForce GTX 570 219 Watts
Difference: 109 Watts (99%)

Memory Bandwidth

The GeForce GTX 570, in theory, should perform much faster than the GeForce GTX 650 Ti overall. (explain)

GeForce GTX 570 152000 MB/sec
GeForce GTX 650 Ti 86400 MB/sec
Difference: 65600 (76%)

Texel Rate

The GeForce GTX 650 Ti will be quite a bit (about 35%) faster with regards to texture filtering than the GeForce GTX 570. (explain)

GeForce GTX 650 Ti 59392 Mtexels/sec
GeForce GTX 570 43920 Mtexels/sec
Difference: 15472 (35%)

Pixel Rate

The GeForce GTX 570 should be much (more or less 97%) better at AA than the GeForce GTX 650 Ti, and also capable of handling higher resolutions better. (explain)

GeForce GTX 570 29280 Mpixels/sec
GeForce GTX 650 Ti 14848 Mpixels/sec
Difference: 14432 (97%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 570

GeForce GTX 650 Ti

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce GTX 570 GeForce GTX 650 Ti
Manufacturer nVidia nVidia
Year December 2010 October 2012
Code Name GF110 GK106
Memory 1280 MB 1024 MB
Core Speed 732 MHz 928 MHz
Memory Speed 3800 MHz 5400 MHz
Power (Max TDP) 219 watts 110 watts
Bandwidth 152000 MB/sec 86400 MB/sec
Texel Rate 43920 Mtexels/sec 59392 Mtexels/sec
Pixel Rate 29280 Mpixels/sec 14848 Mpixels/sec
Unified Shaders 480 768
Texture Mapping Units 60 64
Render Output Units 40 16
Bus Type GDDR5 GDDR5
Bus Width 320-bit 128-bit
Fab Process 40 nm 28 nm
Transistors 3000 million 2540 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3

Memory Bandwidth: Memory bandwidth is the max amount of data (in units of megabytes per second) that can be moved past the external memory interface within a second. It's worked out by multiplying the card's bus width by its memory speed. If it uses DDR memory, it should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The better the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied in one second. This figure is worked out by multiplying the total number of texture units by the core clock speed of the chip. The higher the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card can possibly record to its local memory per second - measured in millions of pixels per second. The number is worked out by multiplying the amount of ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate is also dependant on many other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the maximum fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield