Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 570 vs GeForce GTX 650 Ti

Intro

The GeForce GTX 570 has a core clock speed of 732 MHz and a GDDR5 memory frequency of 950 MHz. It also features a 320-bit bus, and makes use of a 40 nm design. It is made up of 480 SPUs, 60 TAUs, and 40 Raster Operation Units.

Compare all that to the GeForce GTX 650 Ti, which comes with a core clock frequency of 928 MHz and a GDDR5 memory speed of 1350 MHz. It also uses a 128-bit memory bus, and makes use of a 28 nm design. It is comprised of 768 SPUs, 64 TAUs, and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 Ti 110 Watts
GeForce GTX 570 219 Watts
Difference: 109 Watts (99%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 570 should be 76% quicker than the GeForce GTX 650 Ti in general, because of its higher bandwidth. (explain)

GeForce GTX 570 152000 MB/sec
GeForce GTX 650 Ti 86400 MB/sec
Difference: 65600 (76%)

Texel Rate

The GeForce GTX 650 Ti is much (approximately 35%) better at anisotropic filtering than the GeForce GTX 570. (explain)

GeForce GTX 650 Ti 59392 Mtexels/sec
GeForce GTX 570 43920 Mtexels/sec
Difference: 15472 (35%)

Pixel Rate

The GeForce GTX 570 will be a lot (approximately 97%) better at full screen anti-aliasing than the GeForce GTX 650 Ti, and also will be able to handle higher resolutions without losing too much performance. (explain)

GeForce GTX 570 29280 Mpixels/sec
GeForce GTX 650 Ti 14848 Mpixels/sec
Difference: 14432 (97%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 570

Amazon.com

GeForce GTX 650 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 570 GeForce GTX 650 Ti
Manufacturer nVidia nVidia
Year December 2010 October 2012
Code Name GF110 GK106
Memory 1280 MB 1024 MB
Core Speed 732 MHz 928 MHz
Memory Speed 3800 MHz 5400 MHz
Power (Max TDP) 219 watts 110 watts
Bandwidth 152000 MB/sec 86400 MB/sec
Texel Rate 43920 Mtexels/sec 59392 Mtexels/sec
Pixel Rate 29280 Mpixels/sec 14848 Mpixels/sec
Unified Shaders 480 768
Texture Mapping Units 60 64
Render Output Units 40 16
Bus Type GDDR5 GDDR5
Bus Width 320-bit 128-bit
Fab Process 40 nm 28 nm
Transistors 3000 million 2540 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.3

Memory Bandwidth: Memory bandwidth is the max amount of information (measured in MB per second) that can be moved over the external memory interface in a second. It's worked out by multiplying the bus width by its memory clock speed. If it uses DDR memory, it must be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied in one second. This figure is worked out by multiplying the total texture units by the core clock speed of the chip. The better this number, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics chip can possibly write to its local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate also depends on quite a few other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]