Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 8800 GT 256MB vs GeForce GTX 650

Intro

The GeForce 8800 GT 256MB uses a 65 nm design. nVidia has clocked the core speed at 600 MHz. The GDDR3 memory runs at a speed of 700 MHz on this particular model. It features 112 SPUs along with 56 Texture Address Units and 16 ROPs.

Compare all of that to the GeForce GTX 650, which features clock speeds of 1058 MHz on the GPU, and 1250 MHz on the 2048 MB of GDDR5 RAM. It features 384 SPUs along with 32 Texture Address Units and 16 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
GeForce 8800 GT 256MB 105 Watts
Difference: 41 Watts (64%)

Memory Bandwidth

As far as performance goes, the GeForce GTX 650 should theoretically be quite a bit superior to the GeForce 8800 GT 256MB in general. (explain)

GeForce GTX 650 80000 MB/sec
GeForce 8800 GT 256MB 44800 MB/sec
Difference: 35200 (79%)

Texel Rate

The GeForce GTX 650 should be a little bit (about 1%) better at texture filtering than the GeForce 8800 GT 256MB. (explain)

GeForce GTX 650 33856 Mtexels/sec
GeForce 8800 GT 256MB 33600 Mtexels/sec
Difference: 256 (1%)

Pixel Rate

If using a high resolution is important to you, then the GeForce GTX 650 is superior to the GeForce 8800 GT 256MB, and very much so. (explain)

GeForce GTX 650 16928 Mpixels/sec
GeForce 8800 GT 256MB 9600 Mpixels/sec
Difference: 7328 (76%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 8800 GT 256MB

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 8800 GT 256MB GeForce GTX 650
Manufacturer nVidia nVidia
Year Dec 2007 September 2012
Code Name G92 GK107
Fab Process 65 nm 28 nm
Bus PCIe x16 2.0 PCIe 3.0 x16
Memory 256 MB 2048 MB
Core Speed 600 MHz 1058 MHz
Shader Speed 1500 MHz 1058 MHz
Memory Speed 700 MHz (1400 MHz effective) 1250 MHz (5000 MHz effective)
Unified Shaders 112 384
Texture Mapping Units 56 32
Render Output Units 16 16
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3
Power (Max TDP) 105 watts 64 watts
Shader Model 4.0 5.0
Bandwidth 44800 MB/sec 80000 MB/sec
Texel Rate 33600 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 16928 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of data (measured in megabytes per second) that can be transported across the external memory interface in one second. It's worked out by multiplying the card's bus width by its memory clock speed. If it uses DDR memory, the result should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are processed per second. This figure is calculated by multiplying the total number of texture units of the card by the core clock speed of the chip. The higher this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the most pixels the video card could possibly write to the local memory per second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of colour ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on lots of other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree