Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce 8800 GT 256MB vs GeForce GTX 650


The GeForce 8800 GT 256MB makes use of a 65 nm design. nVidia has clocked the core frequency at 600 MHz. The GDDR3 memory works at a frequency of 700 MHz on this particular card. It features 112 SPUs as well as 56 TAUs and 16 Rasterization Operator Units.

Compare those specifications to the GeForce GTX 650, which makes use of a 28 nm design. nVidia has set the core speed at 1058 MHz. The GDDR5 RAM works at a speed of 1250 MHz on this particular card. It features 384 SPUs along with 32 Texture Address Units and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
GeForce 8800 GT 256MB 105 Watts
Difference: 41 Watts (64%)

Memory Bandwidth

As far as performance goes, the GeForce GTX 650 should in theory be quite a bit superior to the GeForce 8800 GT 256MB in general. (explain)

GeForce GTX 650 80000 MB/sec
GeForce 8800 GT 256MB 44800 MB/sec
Difference: 35200 (79%)

Texel Rate

The GeForce GTX 650 should be a bit (approximately 1%) more effective at texture filtering than the GeForce 8800 GT 256MB. (explain)

GeForce GTX 650 33856 Mtexels/sec
GeForce 8800 GT 256MB 33600 Mtexels/sec
Difference: 256 (1%)

Pixel Rate

If running with a high resolution is important to you, then the GeForce GTX 650 is a better choice, by far. (explain)

GeForce GTX 650 16928 Mpixels/sec
GeForce 8800 GT 256MB 9600 Mpixels/sec
Difference: 7328 (76%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 8800 GT 256MB

GeForce GTX 650

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce 8800 GT 256MB GeForce GTX 650
Manufacturer nVidia nVidia
Year Dec 2007 September 2012
Code Name G92 GK107
Memory 256 MB 2048 MB
Core Speed 600 MHz 1058 MHz
Memory Speed 1400 MHz 5000 MHz
Power (Max TDP) 105 watts 64 watts
Bandwidth 44800 MB/sec 80000 MB/sec
Texel Rate 33600 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 16928 Mpixels/sec
Unified Shaders 112 384
Texture Mapping Units 56 32
Render Output Units 16 16
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
Fab Process 65 nm 28 nm
Transistors 754 million 1300 million
Bus PCIe x16 2.0 PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3

Memory Bandwidth: Bandwidth is the max amount of information (measured in MB per second) that can be transported across the external memory interface in one second. The number is calculated by multiplying the card's bus width by the speed of its memory. If the card has DDR RAM, it should be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The better the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be processed in one second. This number is worked out by multiplying the total amount of texture units by the core speed of the chip. The higher this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card can possibly write to its local memory in a second - measured in millions of pixels per second. The number is calculated by multiplying the number of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate also depends on quite a few other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to get to the maximum fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield