Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 8800 GT 256MB vs GeForce GTX 650

Intro

The GeForce 8800 GT 256MB has a core clock speed of 600 MHz and a GDDR3 memory frequency of 700 MHz. It also makes use of a 256-bit bus, and makes use of a 65 nm design. It features 112 SPUs, 56 Texture Address Units, and 16 Raster Operation Units.

Compare those specs to the GeForce GTX 650, which uses a 28 nm design. nVidia has set the core frequency at 1058 MHz. The GDDR5 memory runs at a frequency of 1250 MHz on this specific model. It features 384 SPUs as well as 32 TAUs and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
GeForce 8800 GT 256MB 105 Watts
Difference: 41 Watts (64%)

Memory Bandwidth

The GeForce GTX 650, in theory, should perform a lot faster than the GeForce 8800 GT 256MB in general. (explain)

GeForce GTX 650 80000 MB/sec
GeForce 8800 GT 256MB 44800 MB/sec
Difference: 35200 (79%)

Texel Rate

The GeForce GTX 650 is a little bit (approximately 1%) better at AF than the GeForce 8800 GT 256MB. (explain)

GeForce GTX 650 33856 Mtexels/sec
GeForce 8800 GT 256MB 33600 Mtexels/sec
Difference: 256 (1%)

Pixel Rate

The GeForce GTX 650 should be much (more or less 76%) better at full screen anti-aliasing than the GeForce 8800 GT 256MB, and will be able to handle higher screen resolutions without slowing down too much. (explain)

GeForce GTX 650 16928 Mpixels/sec
GeForce 8800 GT 256MB 9600 Mpixels/sec
Difference: 7328 (76%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 8800 GT 256MB

Amazon.com

GeForce GTX 650

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 8800 GT 256MB GeForce GTX 650
Manufacturer nVidia nVidia
Year Dec 2007 September 2012
Code Name G92 GK107
Memory 256 MB 2048 MB
Core Speed 600 MHz 1058 MHz
Memory Speed 1400 MHz 5000 MHz
Power (Max TDP) 105 watts 64 watts
Bandwidth 44800 MB/sec 80000 MB/sec
Texel Rate 33600 Mtexels/sec 33856 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 16928 Mpixels/sec
Unified Shaders 112 384
Texture Mapping Units 56 32
Render Output Units 16 16
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
Fab Process 65 nm 28 nm
Transistors 754 million 1300 million
Bus PCIe x16 2.0 PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3

Memory Bandwidth: Memory bandwidth is the max amount of information (counted in MB per second) that can be transferred past the external memory interface in a second. The number is calculated by multiplying the card's bus width by the speed of its memory. In the case of DDR memory, it should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The higher the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied per second. This is calculated by multiplying the total texture units by the core speed of the chip. The better this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in one second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip could possibly record to the local memory in one second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate also depends on lots of other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]