Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce GTX 650 vs Radeon HD 4350


The GeForce GTX 650 has a core clock speed of 1058 MHz and a GDDR5 memory speed of 1250 MHz. It also uses a 128-bit memory bus, and makes use of a 28 nm design. It features 384 SPUs, 32 Texture Address Units, and 16 Raster Operation Units.

Compare that to the Radeon HD 4350, which makes use of a 55 nm design. AMD has clocked the core frequency at 575 MHz. The DDR2 memory works at a frequency of 500 MHz on this particular model. It features 80(16x5) SPUs along with 8 Texture Address Units and 4 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 4350 22 Watts
GeForce GTX 650 64 Watts
Difference: 42 Watts (191%)

Memory Bandwidth

The GeForce GTX 650 should theoretically be much faster than the Radeon HD 4350 overall. (explain)

GeForce GTX 650 80000 MB/sec
Radeon HD 4350 8000 MB/sec
Difference: 72000 (900%)

Texel Rate

The GeForce GTX 650 will be a lot (about 636%) better at texture filtering than the Radeon HD 4350. (explain)

GeForce GTX 650 33856 Mtexels/sec
Radeon HD 4350 4600 Mtexels/sec
Difference: 29256 (636%)

Pixel Rate

The GeForce GTX 650 should be a lot (more or less 636%) faster with regards to AA than the Radeon HD 4350, and able to handle higher resolutions without losing too much performance. (explain)

GeForce GTX 650 16928 Mpixels/sec
Radeon HD 4350 2300 Mpixels/sec
Difference: 14628 (636%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 650

Radeon HD 4350

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce GTX 650 Radeon HD 4350
Manufacturer nVidia AMD
Year September 2012 Sep 30, 2008
Code Name GK107 RV710
Memory 2048 MB 512 MB
Core Speed 1058 MHz 575 MHz
Memory Speed 5000 MHz 1000 MHz
Power (Max TDP) 64 watts 22 watts
Bandwidth 80000 MB/sec 8000 MB/sec
Texel Rate 33856 Mtexels/sec 4600 Mtexels/sec
Pixel Rate 16928 Mpixels/sec 2300 Mpixels/sec
Unified Shaders 384 80(16x5)
Texture Mapping Units 32 8
Render Output Units 16 4
Bus Type GDDR5 DDR2
Bus Width 128-bit 64-bit
Fab Process 28 nm 55 nm
Transistors 1300 million 242 million
Bus PCIe 3.0 x16 PCIe 2.0 x16, PCI
DirectX Version DirectX 11.0 DirectX 10.1
OpenGL Version OpenGL 4.3 OpenGL 3.0

Memory Bandwidth: Memory bandwidth is the largest amount of information (in units of megabytes per second) that can be moved past the external memory interface in a second. The number is worked out by multiplying the bus width by its memory speed. If it uses DDR type memory, it should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied per second. This is worked out by multiplying the total number of texture units of the card by the core clock speed of the chip. The better this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the maximum number of pixels the graphics card can possibly record to the local memory in a second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on lots of other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield