Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 650 vs Radeon HD 6770 1GB

Intro

The GeForce GTX 650 features clock speeds of 1058 MHz on the GPU, and 1250 MHz on the 2048 MB of GDDR5 memory. It features 384 SPUs along with 32 Texture Address Units and 16 Rasterization Operator Units.

Compare all that to the Radeon HD 6770 1GB, which comes with GPU clock speed of 900 MHz, and 1024 MB of GDDR5 RAM set to run at 1050 MHz through a 128-bit bus. It also is comprised of 800 SPUs, 40 Texture Address Units, and 16 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 650 64 Watts
Radeon HD 6770 1GB 108 Watts
Difference: 44 Watts (69%)

Memory Bandwidth

In theory, the GeForce GTX 650 should perform a small bit faster than the Radeon HD 6770 1GB overall. (explain)

GeForce GTX 650 80000 MB/sec
Radeon HD 6770 1GB 67200 MB/sec
Difference: 12800 (19%)

Texel Rate

The Radeon HD 6770 1GB should be just a bit (about 6%) better at anisotropic filtering than the GeForce GTX 650. (explain)

Radeon HD 6770 1GB 36000 Mtexels/sec
GeForce GTX 650 33856 Mtexels/sec
Difference: 2144 (6%)

Pixel Rate

If using a high resolution is important to you, then the GeForce GTX 650 is a better choice, not by a very large margin though. (explain)

GeForce GTX 650 16928 Mpixels/sec
Radeon HD 6770 1GB 14400 Mpixels/sec
Difference: 2528 (18%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 650

Amazon.com

Radeon HD 6770 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 650 Radeon HD 6770 1GB
Manufacturer nVidia AMD
Year September 2012 January 2011
Code Name GK107 Juniper XT
Fab Process 28 nm 40 nm
Bus PCIe 3.0 x16 PCIe x16
Memory 2048 MB 1024 MB
Core Speed 1058 MHz 900 MHz
Shader Speed 1058 MHz (N/A) MHz
Memory Speed 1250 MHz (5000 MHz effective) 1050 MHz (4200 MHz effective)
Unified Shaders 384 800
Texture Mapping Units 32 40
Render Output Units 16 16
Bus Type GDDR5 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.3 OpenGL 4.1
Power (Max TDP) 64 watts 108 watts
Shader Model 5.0 5.0
Bandwidth 80000 MB/sec 67200 MB/sec
Texel Rate 33856 Mtexels/sec 36000 Mtexels/sec
Pixel Rate 16928 Mpixels/sec 14400 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of information (measured in megabytes per second) that can be transferred past the external memory interface within a second. It's calculated by multiplying the bus width by its memory clock speed. If the card has DDR RAM, it must be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be processed in one second. This figure is calculated by multiplying the total number of texture units by the core clock speed of the chip. The better the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card can possibly write to its local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the number of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate also depends on quite a few other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree