Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 8300 GS (OEM) vs GeForce GTX 660 Ti

Intro

The GeForce 8300 GS (OEM) uses a 80 nm design. nVidia has clocked the core frequency at 450 MHz. The DDR2 RAM is set to run at a frequency of 400 MHz on this model. It features 8 SPUs as well as 4 TAUs and 2 Rasterization Operator Units.

Compare all of that to the GeForce GTX 660 Ti, which comes with GPU core speed of 915 MHz, and 2048 MB of GDDR5 memory set to run at 1500 MHz through a 192-bit bus. It also is made up of 1344 Stream Processors, 112 Texture Address Units, and 24 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8300 GS (OEM) 40 Watts
GeForce GTX 660 Ti 150 Watts
Difference: 110 Watts (275%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 660 Ti is 2150% quicker than the GeForce 8300 GS (OEM) overall, due to its greater data rate. (explain)

GeForce GTX 660 Ti 144000 MB/sec
GeForce 8300 GS (OEM) 6400 MB/sec
Difference: 137600 (2150%)

Texel Rate

The GeForce GTX 660 Ti is much (more or less 5593%) more effective at AF than the GeForce 8300 GS (OEM). (explain)

GeForce GTX 660 Ti 102480 Mtexels/sec
GeForce 8300 GS (OEM) 1800 Mtexels/sec
Difference: 100680 (5593%)

Pixel Rate

The GeForce GTX 660 Ti should be quite a bit (more or less 2340%) faster with regards to FSAA than the GeForce 8300 GS (OEM), and also able to handle higher screen resolutions without losing too much performance. (explain)

GeForce GTX 660 Ti 21960 Mpixels/sec
GeForce 8300 GS (OEM) 900 Mpixels/sec
Difference: 21060 (2340%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 8300 GS (OEM)

Amazon.com

GeForce GTX 660 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 8300 GS (OEM) GeForce GTX 660 Ti
Manufacturer nVidia nVidia
Year July 2007 August 2012
Code Name G86 GK104
Fab Process 80 nm 28 nm
Bus PCI Express x16 PCIe 3.0 x16
Memory 128 MB 2048 MB
Core Speed 450 MHz 915 MHz
Shader Speed 900 MHz 915 MHz
Memory Speed 400 MHz (800 MHz effective) 1500 MHz (6000 MHz effective)
Unified Shaders 8 1344
Texture Mapping Units 4 112
Render Output Units 2 24
Bus Type DDR2 GDDR5
Bus Width 64-bit 192-bit
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3
Power (Max TDP) 40 watts 150 watts
Shader Model 4.0 5.0
Bandwidth 6400 MB/sec 144000 MB/sec
Texel Rate 1800 Mtexels/sec 102480 Mtexels/sec
Pixel Rate 900 Mpixels/sec 21960 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of information (in units of MB per second) that can be transported across the external memory interface within a second. It's worked out by multiplying the card's bus width by the speed of its memory. If the card has DDR type memory, it must be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied per second. This number is calculated by multiplying the total number of texture units by the core speed of the chip. The better the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the most pixels that the graphics card can possibly record to the local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the number of Render Output Units by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate is also dependant on lots of other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing