Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce 8300 GS (OEM) vs GeForce GTX 660 Ti


The GeForce 8300 GS (OEM) features a clock speed of 450 MHz and a DDR2 memory speed of 400 MHz. It also makes use of a 64-bit bus, and makes use of a 80 nm design. It is comprised of 8 SPUs, 4 TAUs, and 2 ROPs.

Compare those specs to the GeForce GTX 660 Ti, which features GPU clock speed of 915 MHz, and 2048 MB of GDDR5 memory running at 1500 MHz through a 192-bit bus. It also is made up of 1344 Stream Processors, 112 TAUs, and 24 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8300 GS (OEM) 40 Watts
GeForce GTX 660 Ti 150 Watts
Difference: 110 Watts (275%)

Memory Bandwidth

As far as performance goes, the GeForce GTX 660 Ti should theoretically be quite a bit better than the GeForce 8300 GS (OEM) overall. (explain)

GeForce GTX 660 Ti 144000 MB/sec
GeForce 8300 GS (OEM) 6400 MB/sec
Difference: 137600 (2150%)

Texel Rate

The GeForce GTX 660 Ti will be quite a bit (more or less 5593%) more effective at anisotropic filtering than the GeForce 8300 GS (OEM). (explain)

GeForce GTX 660 Ti 102480 Mtexels/sec
GeForce 8300 GS (OEM) 1800 Mtexels/sec
Difference: 100680 (5593%)

Pixel Rate

If running with high levels of AA is important to you, then the GeForce GTX 660 Ti is a better choice, and very much so. (explain)

GeForce GTX 660 Ti 21960 Mpixels/sec
GeForce 8300 GS (OEM) 900 Mpixels/sec
Difference: 21060 (2340%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 8300 GS (OEM)

GeForce GTX 660 Ti

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce 8300 GS (OEM) GeForce GTX 660 Ti
Manufacturer nVidia nVidia
Year July 2007 August 2012
Code Name G86 GK104
Memory 128 MB 2048 MB
Core Speed 450 MHz 915 MHz
Memory Speed 800 MHz 6000 MHz
Power (Max TDP) 40 watts 150 watts
Bandwidth 6400 MB/sec 144000 MB/sec
Texel Rate 1800 Mtexels/sec 102480 Mtexels/sec
Pixel Rate 900 Mpixels/sec 21960 Mpixels/sec
Unified Shaders 8 1344
Texture Mapping Units 4 112
Render Output Units 2 24
Bus Type DDR2 GDDR5
Bus Width 64-bit 192-bit
Fab Process 80 nm 28 nm
Transistors 210 million 3540 million
Bus PCI Express x16 PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3

Memory Bandwidth: Bandwidth is the largest amount of information (counted in megabytes per second) that can be transferred over the external memory interface in one second. It's calculated by multiplying the card's bus width by its memory clock speed. If the card has DDR type RAM, the result should be multiplied by 2 again. If DDR5, multiply by 4 instead. The better the bandwidth is, the faster the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed in one second. This number is calculated by multiplying the total texture units by the core clock speed of the chip. The better this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card could possibly record to the local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate is also dependant on lots of other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield