Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 8300 GS (OEM) vs GeForce GTX 660 Ti

Intro

The GeForce 8300 GS (OEM) has a GPU core clock speed of 450 MHz, and the 128 MB of DDR2 memory is set to run at 400 MHz through a 64-bit bus. It also is made up of 8 Stream Processors, 4 TAUs, and 2 ROPs.

Compare all of that to the GeForce GTX 660 Ti, which comes with GPU core speed of 915 MHz, and 2048 MB of GDDR5 RAM set to run at 1500 MHz through a 192-bit bus. It also is made up of 1344 SPUs, 112 TAUs, and 24 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8300 GS (OEM) 40 Watts
GeForce GTX 660 Ti 150 Watts
Difference: 110 Watts (275%)

Memory Bandwidth

In theory, the GeForce GTX 660 Ti will be 2150% faster than the GeForce 8300 GS (OEM) overall, because of its greater data rate. (explain)

GeForce GTX 660 Ti 144000 MB/sec
GeForce 8300 GS (OEM) 6400 MB/sec
Difference: 137600 (2150%)

Texel Rate

The GeForce GTX 660 Ti should be a lot (approximately 5593%) more effective at AF than the GeForce 8300 GS (OEM). (explain)

GeForce GTX 660 Ti 102480 Mtexels/sec
GeForce 8300 GS (OEM) 1800 Mtexels/sec
Difference: 100680 (5593%)

Pixel Rate

If running with high levels of AA is important to you, then the GeForce GTX 660 Ti is the winner, and very much so. (explain)

GeForce GTX 660 Ti 21960 Mpixels/sec
GeForce 8300 GS (OEM) 900 Mpixels/sec
Difference: 21060 (2340%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 8300 GS (OEM)

Amazon.com

GeForce GTX 660 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 8300 GS (OEM) GeForce GTX 660 Ti
Manufacturer nVidia nVidia
Year July 2007 August 2012
Code Name G86 GK104
Fab Process 80 nm 28 nm
Bus PCI Express x16 PCIe 3.0 x16
Memory 128 MB 2048 MB
Core Speed 450 MHz 915 MHz
Shader Speed 900 MHz 915 MHz
Memory Speed 400 MHz (800 MHz effective) 1500 MHz (6000 MHz effective)
Unified Shaders 8 1344
Texture Mapping Units 4 112
Render Output Units 2 24
Bus Type DDR2 GDDR5
Bus Width 64-bit 192-bit
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3
Power (Max TDP) 40 watts 150 watts
Shader Model 4.0 5.0
Bandwidth 6400 MB/sec 144000 MB/sec
Texel Rate 1800 Mtexels/sec 102480 Mtexels/sec
Pixel Rate 900 Mpixels/sec 21960 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of data (counted in megabytes per second) that can be transported past the external memory interface in a second. It is calculated by multiplying the card's interface width by the speed of its memory. If the card has DDR type memory, it must be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The higher the bandwidth is, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed in one second. This is worked out by multiplying the total amount of texture units by the core speed of the chip. The higher the texel rate, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card could possibly write to the local memory in a second - measured in millions of pixels per second. The number is worked out by multiplying the amount of ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on lots of other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree