Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 8300 GS (OEM) vs GeForce GTX 660 Ti

Intro

The GeForce 8300 GS (OEM) makes use of a 80 nm design. nVidia has clocked the core frequency at 450 MHz. The DDR2 memory works at a frequency of 400 MHz on this particular model. It features 8 SPUs along with 4 TAUs and 2 ROPs.

Compare all of that to the GeForce GTX 660 Ti, which has core speeds of 915 MHz on the GPU, and 1500 MHz on the 2048 MB of GDDR5 RAM. It features 1344 SPUs as well as 112 TAUs and 24 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8300 GS (OEM) 40 Watts
GeForce GTX 660 Ti 150 Watts
Difference: 110 Watts (275%)

Memory Bandwidth

The GeForce GTX 660 Ti, in theory, should perform quite a bit faster than the GeForce 8300 GS (OEM) overall. (explain)

GeForce GTX 660 Ti 144000 MB/sec
GeForce 8300 GS (OEM) 6400 MB/sec
Difference: 137600 (2150%)

Texel Rate

The GeForce GTX 660 Ti should be a lot (more or less 5593%) more effective at anisotropic filtering than the GeForce 8300 GS (OEM). (explain)

GeForce GTX 660 Ti 102480 Mtexels/sec
GeForce 8300 GS (OEM) 1800 Mtexels/sec
Difference: 100680 (5593%)

Pixel Rate

The GeForce GTX 660 Ti will be quite a bit (about 2340%) more effective at FSAA than the GeForce 8300 GS (OEM), and also should be able to handle higher screen resolutions more effectively. (explain)

GeForce GTX 660 Ti 21960 Mpixels/sec
GeForce 8300 GS (OEM) 900 Mpixels/sec
Difference: 21060 (2340%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 8300 GS (OEM)

Amazon.com

GeForce GTX 660 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 8300 GS (OEM) GeForce GTX 660 Ti
Manufacturer nVidia nVidia
Year July 2007 August 2012
Code Name G86 GK104
Fab Process 80 nm 28 nm
Bus PCI Express x16 PCIe 3.0 x16
Memory 128 MB 2048 MB
Core Speed 450 MHz 915 MHz
Shader Speed 900 MHz 915 MHz
Memory Speed 400 MHz (800 MHz effective) 1500 MHz (6000 MHz effective)
Unified Shaders 8 1344
Texture Mapping Units 4 112
Render Output Units 2 24
Bus Type DDR2 GDDR5
Bus Width 64-bit 192-bit
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3
Power (Max TDP) 40 watts 150 watts
Shader Model 4.0 5.0
Bandwidth 6400 MB/sec 144000 MB/sec
Texel Rate 1800 Mtexels/sec 102480 Mtexels/sec
Pixel Rate 900 Mpixels/sec 21960 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of data (measured in MB per second) that can be transported over the external memory interface in a second. It's worked out by multiplying the card's bus width by the speed of its memory. In the case of DDR memory, it must be multiplied by 2 again. If DDR5, multiply by 4 instead. The better the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed per second. This figure is calculated by multiplying the total texture units of the card by the core clock speed of the chip. The higher the texel rate, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the most pixels the graphics card can possibly record to the local memory per second - measured in millions of pixels per second. The figure is worked out by multiplying the number of ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate is also dependant on quite a few other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree