Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 8300 GS (OEM) vs GeForce GTX 660 Ti

Intro

The GeForce 8300 GS (OEM) makes use of a 80 nm design. nVidia has set the core frequency at 450 MHz. The DDR2 RAM is set to run at a frequency of 400 MHz on this specific model. It features 8 SPUs along with 4 Texture Address Units and 2 ROPs.

Compare all that to the GeForce GTX 660 Ti, which makes use of a 28 nm design. nVidia has clocked the core speed at 915 MHz. The GDDR5 RAM runs at a frequency of 1500 MHz on this particular model. It features 1344 SPUs along with 112 Texture Address Units and 24 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8300 GS (OEM) 40 Watts
GeForce GTX 660 Ti 150 Watts
Difference: 110 Watts (275%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 660 Ti should be 2150% faster than the GeForce 8300 GS (OEM) overall, due to its higher data rate. (explain)

GeForce GTX 660 Ti 144000 MB/sec
GeForce 8300 GS (OEM) 6400 MB/sec
Difference: 137600 (2150%)

Texel Rate

The GeForce GTX 660 Ti will be much (approximately 5593%) better at anisotropic filtering than the GeForce 8300 GS (OEM). (explain)

GeForce GTX 660 Ti 102480 Mtexels/sec
GeForce 8300 GS (OEM) 1800 Mtexels/sec
Difference: 100680 (5593%)

Pixel Rate

The GeForce GTX 660 Ti will be a lot (about 2340%) better at anti-aliasing than the GeForce 8300 GS (OEM), and also able to handle higher resolutions without losing too much performance. (explain)

GeForce GTX 660 Ti 21960 Mpixels/sec
GeForce 8300 GS (OEM) 900 Mpixels/sec
Difference: 21060 (2340%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 8300 GS (OEM)

Amazon.com

GeForce GTX 660 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 8300 GS (OEM) GeForce GTX 660 Ti
Manufacturer nVidia nVidia
Year July 2007 August 2012
Code Name G86 GK104
Memory 128 MB 2048 MB
Core Speed 450 MHz 915 MHz
Memory Speed 800 MHz 6000 MHz
Power (Max TDP) 40 watts 150 watts
Bandwidth 6400 MB/sec 144000 MB/sec
Texel Rate 1800 Mtexels/sec 102480 Mtexels/sec
Pixel Rate 900 Mpixels/sec 21960 Mpixels/sec
Unified Shaders 8 1344
Texture Mapping Units 4 112
Render Output Units 2 24
Bus Type DDR2 GDDR5
Bus Width 64-bit 192-bit
Fab Process 80 nm 28 nm
Transistors 210 million 3540 million
Bus PCI Express x16 PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.3

Memory Bandwidth: Memory bandwidth is the maximum amount of information (in units of megabytes per second) that can be transported across the external memory interface in a second. It is calculated by multiplying the bus width by the speed of its memory. In the case of DDR RAM, it should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be applied per second. This figure is worked out by multiplying the total amount of texture units by the core clock speed of the chip. The better this number, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card could possibly write to the local memory in a second - measured in millions of pixels per second. The number is calculated by multiplying the number of Render Output Units by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on quite a few other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]