Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GTX 660 Ti vs Radeon HD 5850

Intro

The GeForce GTX 660 Ti has a GPU core clock speed of 915 MHz, and the 2048 MB of GDDR5 RAM runs at 1500 MHz through a 192-bit bus. It also is made up of 1344 SPUs, 112 TAUs, and 24 ROPs.

Compare all of that to the Radeon HD 5850, which features GPU clock speed of 725 MHz, and 1024 MB of GDDR5 RAM set to run at 1000 MHz through a 256-bit bus. It also is comprised of 1440(288x5) SPUs, 72 Texture Address Units, and 32 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 660 Ti 150 Watts
Radeon HD 5850 151 Watts
Difference: 1 Watts (1%)

Memory Bandwidth

Theoretically, the GeForce GTX 660 Ti should perform a bit faster than the Radeon HD 5850 in general. (explain)

GeForce GTX 660 Ti 144000 MB/sec
Radeon HD 5850 128000 MB/sec
Difference: 16000 (13%)

Texel Rate

The GeForce GTX 660 Ti will be much (approximately 96%) better at anisotropic filtering than the Radeon HD 5850. (explain)

GeForce GTX 660 Ti 102480 Mtexels/sec
Radeon HD 5850 52200 Mtexels/sec
Difference: 50280 (96%)

Pixel Rate

If running with lots of anti-aliasing is important to you, then the Radeon HD 5850 is superior to the GeForce GTX 660 Ti, but not by far. (explain)

Radeon HD 5850 23200 Mpixels/sec
GeForce GTX 660 Ti 21960 Mpixels/sec
Difference: 1240 (6%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 660 Ti

Amazon.com

Radeon HD 5850

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 660 Ti Radeon HD 5850
Manufacturer nVidia AMD
Year August 2012 September 30, 2009
Code Name GK104 Cypress PRO
Memory 2048 MB 1024 MB
Core Speed 915 MHz 725 MHz
Memory Speed 6000 MHz 4000 MHz
Power (Max TDP) 150 watts 151 watts
Bandwidth 144000 MB/sec 128000 MB/sec
Texel Rate 102480 Mtexels/sec 52200 Mtexels/sec
Pixel Rate 21960 Mpixels/sec 23200 Mpixels/sec
Unified Shaders 1344 1440(288x5)
Texture Mapping Units 112 72
Render Output Units 24 32
Bus Type GDDR5 GDDR5
Bus Width 192-bit 256-bit
Fab Process 28 nm 40 nm
Transistors 3540 million 2154 million
Bus PCIe 3.0 x16 PCIe 2.1 x16
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.3 OpenGL 3.2

Memory Bandwidth: Bandwidth is the max amount of data (measured in MB per second) that can be moved over the external memory interface within a second. It's calculated by multiplying the card's bus width by its memory speed. If it uses DDR type RAM, it must be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied per second. This number is calculated by multiplying the total number of texture units by the core speed of the chip. The higher this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip can possibly write to the local memory in one second - measured in millions of pixels per second. The figure is calculated by multiplying the number of Render Output Units by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate also depends on lots of other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]