Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 660 Ti vs Radeon HD 5850

Intro

The GeForce GTX 660 Ti uses a 28 nm design. nVidia has clocked the core speed at 915 MHz. The GDDR5 RAM runs at a frequency of 1500 MHz on this particular model. It features 1344 SPUs as well as 112 TAUs and 24 ROPs.

Compare all that to the Radeon HD 5850, which has clock speeds of 725 MHz on the GPU, and 1000 MHz on the 1024 MB of GDDR5 memory. It features 1440(288x5) SPUs as well as 72 TAUs and 32 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GTX 660 Ti 150 Watts
Radeon HD 5850 151 Watts
Difference: 1 Watts (1%)

Memory Bandwidth

In theory, the GeForce GTX 660 Ti should perform a small bit faster than the Radeon HD 5850 overall. (explain)

GeForce GTX 660 Ti 144000 MB/sec
Radeon HD 5850 128000 MB/sec
Difference: 16000 (13%)

Texel Rate

The GeForce GTX 660 Ti should be quite a bit (more or less 96%) better at AF than the Radeon HD 5850. (explain)

GeForce GTX 660 Ti 102480 Mtexels/sec
Radeon HD 5850 52200 Mtexels/sec
Difference: 50280 (96%)

Pixel Rate

If running with high levels of AA is important to you, then the Radeon HD 5850 is a better choice, not by a very large margin though. (explain)

Radeon HD 5850 23200 Mpixels/sec
GeForce GTX 660 Ti 21960 Mpixels/sec
Difference: 1240 (6%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 660 Ti

Amazon.com

Radeon HD 5850

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 660 Ti Radeon HD 5850
Manufacturer nVidia AMD
Year August 2012 September 30, 2009
Code Name GK104 Cypress PRO
Fab Process 28 nm 40 nm
Bus PCIe 3.0 x16 PCIe 2.1 x16
Memory 2048 MB 1024 MB
Core Speed 915 MHz 725 MHz
Shader Speed 915 MHz (N/A) MHz
Memory Speed 1500 MHz (6000 MHz effective) 1000 MHz (4000 MHz effective)
Unified Shaders 1344 1440(288x5)
Texture Mapping Units 112 72
Render Output Units 24 32
Bus Type GDDR5 GDDR5
Bus Width 192-bit 256-bit
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.3 OpenGL 3.2
Power (Max TDP) 150 watts 151 watts
Shader Model 5.0 5.0
Bandwidth 144000 MB/sec 128000 MB/sec
Texel Rate 102480 Mtexels/sec 52200 Mtexels/sec
Pixel Rate 21960 Mpixels/sec 23200 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of information (in units of megabytes per second) that can be transported over the external memory interface within a second. It is worked out by multiplying the card's interface width by its memory speed. If the card has DDR type RAM, it must be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be processed in one second. This number is calculated by multiplying the total number of texture units of the card by the core speed of the chip. The better the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip can possibly record to the local memory in one second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate also depends on quite a few other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree