Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 8500 GT vs GeForce GT 640 DDR3

Intro

The GeForce 8500 GT comes with a core clock frequency of 450 MHz and a DDR2 memory speed of 400 MHz. It also features a 128-bit bus, and uses a 80 nm design. It features 16 SPUs, 8 Texture Address Units, and 4 Raster Operation Units.

Compare all that to the GeForce GT 640 DDR3, which has GPU clock speed of 900 MHz, and 2048 MB of DDR3 RAM running at 1782 MHz through a 128-bit bus. It also is comprised of 384 SPUs, 32 Texture Address Units, and 16 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8500 GT 45 Watts
GeForce GT 640 DDR3 65 Watts
Difference: 20 Watts (44%)

Memory Bandwidth

In theory, the GeForce GT 640 DDR3 should be quite a bit faster than the GeForce 8500 GT in general. (explain)

GeForce GT 640 DDR3 57024 MB/sec
GeForce 8500 GT 12800 MB/sec
Difference: 44224 (346%)

Texel Rate

The GeForce GT 640 DDR3 will be quite a bit (about 700%) more effective at texture filtering than the GeForce 8500 GT. (explain)

GeForce GT 640 DDR3 28800 Mtexels/sec
GeForce 8500 GT 3600 Mtexels/sec
Difference: 25200 (700%)

Pixel Rate

The GeForce GT 640 DDR3 is quite a bit (more or less 700%) more effective at FSAA than the GeForce 8500 GT, and will be capable of handling higher resolutions without losing too much performance. (explain)

GeForce GT 640 DDR3 14400 Mpixels/sec
GeForce 8500 GT 1800 Mpixels/sec
Difference: 12600 (700%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 8500 GT

Amazon.com

GeForce GT 640 DDR3

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 8500 GT GeForce GT 640 DDR3
Manufacturer nVidia nVidia
Year April 2007 June 2012
Code Name G86 GK107
Fab Process 80 nm 28 nm
Bus PCIe x16, PCI, PCIe x16 2.0 PCIe 3.0 x16
Memory 512 MB 2048 MB
Core Speed 450 MHz 900 MHz
Shader Speed 900 MHz 900 MHz
Memory Speed 400 MHz (800 MHz effective) 1782 MHz (3564 MHz effective)
Unified Shaders 16 384
Texture Mapping Units 8 32
Render Output Units 4 16
Bus Type DDR2 DDR3
Bus Width 128-bit 128-bit
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.2
Power (Max TDP) 45 watts 65 watts
Shader Model 4.0 5.0
Bandwidth 12800 MB/sec 57024 MB/sec
Texel Rate 3600 Mtexels/sec 28800 Mtexels/sec
Pixel Rate 1800 Mpixels/sec 14400 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of information (counted in MB per second) that can be transported past the external memory interface in a second. The number is worked out by multiplying the card's bus width by its memory clock speed. If the card has DDR memory, the result should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The better the memory bandwidth, the faster the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are processed per second. This is worked out by multiplying the total texture units of the card by the core clock speed of the chip. The higher this number, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card could possibly write to its local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the amount of Raster Operations Pipelines by the the card's clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate is also dependant on lots of other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree