Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce 8500 GT vs GeForce GT 640 DDR3


The GeForce 8500 GT has clock speeds of 450 MHz on the GPU, and 400 MHz on the 512 MB of DDR2 memory. It features 16 SPUs along with 8 Texture Address Units and 4 Rasterization Operator Units.

Compare those specifications to the GeForce GT 640 DDR3, which has GPU clock speed of 900 MHz, and 2048 MB of DDR3 memory set to run at 1782 MHz through a 128-bit bus. It also is made up of 384 Stream Processors, 32 TAUs, and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8500 GT 45 Watts
GeForce GT 640 DDR3 65 Watts
Difference: 20 Watts (44%)

Memory Bandwidth

The GeForce GT 640 DDR3 should in theory be a lot faster than the GeForce 8500 GT in general. (explain)

GeForce GT 640 DDR3 57024 MB/sec
GeForce 8500 GT 12800 MB/sec
Difference: 44224 (346%)

Texel Rate

The GeForce GT 640 DDR3 is quite a bit (about 700%) better at AF than the GeForce 8500 GT. (explain)

GeForce GT 640 DDR3 28800 Mtexels/sec
GeForce 8500 GT 3600 Mtexels/sec
Difference: 25200 (700%)

Pixel Rate

The GeForce GT 640 DDR3 is much (approximately 700%) more effective at AA than the GeForce 8500 GT, and able to handle higher screen resolutions without losing too much performance. (explain)

GeForce GT 640 DDR3 14400 Mpixels/sec
GeForce 8500 GT 1800 Mpixels/sec
Difference: 12600 (700%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 8500 GT

GeForce GT 640 DDR3

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce 8500 GT GeForce GT 640 DDR3
Manufacturer nVidia nVidia
Year April 2007 June 2012
Code Name G86 GK107
Memory 512 MB 2048 MB
Core Speed 450 MHz 900 MHz
Memory Speed 800 MHz 3564 MHz
Power (Max TDP) 45 watts 65 watts
Bandwidth 12800 MB/sec 57024 MB/sec
Texel Rate 3600 Mtexels/sec 28800 Mtexels/sec
Pixel Rate 1800 Mpixels/sec 14400 Mpixels/sec
Unified Shaders 16 384
Texture Mapping Units 8 32
Render Output Units 4 16
Bus Type DDR2 DDR3
Bus Width 128-bit 128-bit
Fab Process 80 nm 28 nm
Transistors 210 million 1300 million
Bus PCIe x16, PCI, PCIe x16 2.0 PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.2

Memory Bandwidth: Memory bandwidth is the largest amount of information (in units of megabytes per second) that can be transferred past the external memory interface within a second. The number is worked out by multiplying the interface width by the speed of its memory. In the case of DDR RAM, it must be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied in one second. This number is calculated by multiplying the total number of texture units of the card by the core clock speed of the chip. The higher this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the maximum number of pixels the graphics card can possibly record to its local memory in one second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate also depends on many other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to get to the maximum fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield