Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 8500 GT vs GeForce GT 640 DDR3

Intro

The GeForce 8500 GT uses a 80 nm design. nVidia has set the core speed at 450 MHz. The DDR2 RAM runs at a frequency of 400 MHz on this specific card. It features 16 SPUs along with 8 Texture Address Units and 4 Rasterization Operator Units.

Compare all that to the GeForce GT 640 DDR3, which comes with core clock speeds of 900 MHz on the GPU, and 1782 MHz on the 2048 MB of DDR3 RAM. It features 384 SPUs as well as 32 Texture Address Units and 16 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8500 GT 45 Watts
GeForce GT 640 DDR3 65 Watts
Difference: 20 Watts (44%)

Memory Bandwidth

The GeForce GT 640 DDR3 should in theory be quite a bit faster than the GeForce 8500 GT in general. (explain)

GeForce GT 640 DDR3 57024 MB/sec
GeForce 8500 GT 12800 MB/sec
Difference: 44224 (346%)

Texel Rate

The GeForce GT 640 DDR3 should be quite a bit (about 700%) more effective at texture filtering than the GeForce 8500 GT. (explain)

GeForce GT 640 DDR3 28800 Mtexels/sec
GeForce 8500 GT 3600 Mtexels/sec
Difference: 25200 (700%)

Pixel Rate

If using high levels of AA is important to you, then the GeForce GT 640 DDR3 is superior to the GeForce 8500 GT, by a large margin. (explain)

GeForce GT 640 DDR3 14400 Mpixels/sec
GeForce 8500 GT 1800 Mpixels/sec
Difference: 12600 (700%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 8500 GT

Amazon.com

GeForce GT 640 DDR3

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 8500 GT GeForce GT 640 DDR3
Manufacturer nVidia nVidia
Year April 2007 June 2012
Code Name G86 GK107
Fab Process 80 nm 28 nm
Bus PCIe x16, PCI, PCIe x16 2.0 PCIe 3.0 x16
Memory 512 MB 2048 MB
Core Speed 450 MHz 900 MHz
Shader Speed 900 MHz 900 MHz
Memory Speed 400 MHz (800 MHz effective) 1782 MHz (3564 MHz effective)
Unified Shaders 16 384
Texture Mapping Units 8 32
Render Output Units 4 16
Bus Type DDR2 DDR3
Bus Width 128-bit 128-bit
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.2
Power (Max TDP) 45 watts 65 watts
Shader Model 4.0 5.0
Bandwidth 12800 MB/sec 57024 MB/sec
Texel Rate 3600 Mtexels/sec 28800 Mtexels/sec
Pixel Rate 1800 Mpixels/sec 14400 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of information (counted in MB per second) that can be transported past the external memory interface in one second. It's calculated by multiplying the bus width by its memory speed. In the case of DDR type memory, the result should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied in one second. This is calculated by multiplying the total amount of texture units by the core clock speed of the chip. The higher this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the most pixels that the graphics card could possibly record to the local memory per second - measured in millions of pixels per second. The number is worked out by multiplying the number of colour ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate is also dependant on many other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree