Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 8500 GT vs GeForce GT 640 DDR3

Intro

The GeForce 8500 GT makes use of a 80 nm design. nVidia has set the core frequency at 450 MHz. The DDR2 RAM is set to run at a speed of 400 MHz on this particular card. It features 16 SPUs as well as 8 Texture Address Units and 4 Rasterization Operator Units.

Compare all of that to the GeForce GT 640 DDR3, which has a core clock speed of 900 MHz and a DDR3 memory speed of 1782 MHz. It also uses a 128-bit bus, and uses a 28 nm design. It features 384 SPUs, 32 TAUs, and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 8500 GT 45 Watts
GeForce GT 640 DDR3 65 Watts
Difference: 20 Watts (44%)

Memory Bandwidth

The GeForce GT 640 DDR3 should theoretically perform much faster than the GeForce 8500 GT overall. (explain)

GeForce GT 640 DDR3 57024 MB/sec
GeForce 8500 GT 12800 MB/sec
Difference: 44224 (346%)

Texel Rate

The GeForce GT 640 DDR3 will be much (about 700%) better at anisotropic filtering than the GeForce 8500 GT. (explain)

GeForce GT 640 DDR3 28800 Mtexels/sec
GeForce 8500 GT 3600 Mtexels/sec
Difference: 25200 (700%)

Pixel Rate

The GeForce GT 640 DDR3 will be quite a bit (more or less 700%) faster with regards to AA than the GeForce 8500 GT, and also will be capable of handling higher resolutions while still performing well. (explain)

GeForce GT 640 DDR3 14400 Mpixels/sec
GeForce 8500 GT 1800 Mpixels/sec
Difference: 12600 (700%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 8500 GT

Amazon.com

GeForce GT 640 DDR3

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 8500 GT GeForce GT 640 DDR3
Manufacturer nVidia nVidia
Year April 2007 June 2012
Code Name G86 GK107
Memory 512 MB 2048 MB
Core Speed 450 MHz 900 MHz
Memory Speed 800 MHz 3564 MHz
Power (Max TDP) 45 watts 65 watts
Bandwidth 12800 MB/sec 57024 MB/sec
Texel Rate 3600 Mtexels/sec 28800 Mtexels/sec
Pixel Rate 1800 Mpixels/sec 14400 Mpixels/sec
Unified Shaders 16 384
Texture Mapping Units 8 32
Render Output Units 4 16
Bus Type DDR2 DDR3
Bus Width 128-bit 128-bit
Fab Process 80 nm 28 nm
Transistors 210 million 1300 million
Bus PCIe x16, PCI, PCIe x16 2.0 PCIe 3.0 x16
DirectX Version DirectX 10 DirectX 11.0
OpenGL Version OpenGL 3.0 OpenGL 4.2

Memory Bandwidth: Bandwidth is the largest amount of information (in units of MB per second) that can be transferred over the external memory interface in a second. The number is worked out by multiplying the interface width by its memory clock speed. If it uses DDR memory, it should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are processed in one second. This figure is worked out by multiplying the total amount of texture units by the core speed of the chip. The higher the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card can possibly record to the local memory per second - measured in millions of pixels per second. The number is calculated by multiplying the amount of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate also depends on lots of other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]