Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 640 DDR3 vs GeForce GTX 260

Intro

The GeForce GT 640 DDR3 features core clock speeds of 900 MHz on the GPU, and 1782 MHz on the 2048 MB of DDR3 RAM. It features 384 SPUs as well as 32 TAUs and 16 ROPs.

Compare those specifications to the GeForce GTX 260, which features clock speeds of 576 MHz on the GPU, and 999 MHz on the 896 MB of GDDR3 RAM. It features 192 SPUs along with 64 Texture Address Units and 28 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 640 DDR3 65 Watts
GeForce GTX 260 182 Watts
Difference: 117 Watts (180%)

Memory Bandwidth

Theoretically, the GeForce GTX 260 should perform quite a bit faster than the GeForce GT 640 DDR3 in general. (explain)

GeForce GTX 260 111888 MB/sec
GeForce GT 640 DDR3 57024 MB/sec
Difference: 54864 (96%)

Texel Rate

The GeForce GTX 260 will be much (more or less 28%) more effective at texture filtering than the GeForce GT 640 DDR3. (explain)

GeForce GTX 260 36864 Mtexels/sec
GeForce GT 640 DDR3 28800 Mtexels/sec
Difference: 8064 (28%)

Pixel Rate

If using lots of anti-aliasing is important to you, then the GeForce GTX 260 is a better choice, but not by far. (explain)

GeForce GTX 260 16128 Mpixels/sec
GeForce GT 640 DDR3 14400 Mpixels/sec
Difference: 1728 (12%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GT 640 DDR3

Amazon.com

GeForce GTX 260

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GT 640 DDR3 GeForce GTX 260
Manufacturer nVidia nVidia
Year June 2012 June 16, 2008
Code Name GK107 G200
Fab Process 28 nm 65 nm
Bus PCIe 3.0 x16 PCIe x16 2.0
Memory 2048 MB 896 MB
Core Speed 900 MHz 576 MHz
Shader Speed 900 MHz 1242 MHz
Memory Speed 1782 MHz (3564 MHz effective) 999 MHz (1998 MHz effective)
Unified Shaders 384 192
Texture Mapping Units 32 64
Render Output Units 16 28
Bus Type DDR3 GDDR3
Bus Width 128-bit 448-bit
DirectX Version DirectX 11.0 DirectX 10
OpenGL Version OpenGL 4.2 OpenGL 3.1
Power (Max TDP) 65 watts 182 watts
Shader Model 5.0 4.0
Bandwidth 57024 MB/sec 111888 MB/sec
Texel Rate 28800 Mtexels/sec 36864 Mtexels/sec
Pixel Rate 14400 Mpixels/sec 16128 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of information (measured in megabytes per second) that can be moved over the external memory interface within a second. It is calculated by multiplying the interface width by its memory speed. In the case of DDR memory, the result should be multiplied by 2 again. If it uses DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the better the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied in one second. This is calculated by multiplying the total texture units by the core speed of the chip. The higher this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card could possibly write to its local memory in a second - measured in millions of pixels per second. The number is worked out by multiplying the amount of Render Output Units by the clock speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate is also dependant on many other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree