Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GT 430 vs GeForce GT 640 DDR3

Intro

The GeForce GT 430 features a core clock speed of 700 MHz and a GDDR3 memory frequency of 900 MHz. It also features a 128-bit memory bus, and makes use of a 40 nm design. It is comprised of 96 SPUs, 16 Texture Address Units, and 4 ROPs.

Compare that to the GeForce GT 640 DDR3, which features a core clock speed of 900 MHz and a DDR3 memory speed of 1782 MHz. It also features a 128-bit bus, and uses a 28 nm design. It is comprised of 384 SPUs, 32 TAUs, and 16 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 430 60 Watts
GeForce GT 640 DDR3 65 Watts
Difference: 5 Watts (8%)

Memory Bandwidth

Theoretically speaking, the GeForce GT 640 DDR3 should perform a lot faster than the GeForce GT 430 overall. (explain)

GeForce GT 640 DDR3 57024 MB/sec
GeForce GT 430 28800 MB/sec
Difference: 28224 (98%)

Texel Rate

The GeForce GT 640 DDR3 will be quite a bit (approximately 157%) more effective at texture filtering than the GeForce GT 430. (explain)

GeForce GT 640 DDR3 28800 Mtexels/sec
GeForce GT 430 11200 Mtexels/sec
Difference: 17600 (157%)

Pixel Rate

If using a high resolution is important to you, then the GeForce GT 640 DDR3 is the winner, by far. (explain)

GeForce GT 640 DDR3 14400 Mpixels/sec
GeForce GT 430 2800 Mpixels/sec
Difference: 11600 (414%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 430

Amazon.com

GeForce GT 640 DDR3

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 430 GeForce GT 640 DDR3
Manufacturer nVidia nVidia
Year October 2010 June 2012
Code Name GF108 GK107
Memory 512 MB 2048 MB
Core Speed 700 MHz 900 MHz
Memory Speed 1800 MHz 3564 MHz
Power (Max TDP) 60 watts 65 watts
Bandwidth 28800 MB/sec 57024 MB/sec
Texel Rate 11200 Mtexels/sec 28800 Mtexels/sec
Pixel Rate 2800 Mpixels/sec 14400 Mpixels/sec
Unified Shaders 96 384
Texture Mapping Units 16 32
Render Output Units 4 16
Bus Type GDDR3 DDR3
Bus Width 128-bit 128-bit
Fab Process 40 nm 28 nm
Transistors 585 million 1300 million
Bus PCIe x16 PCIe 3.0 x16
DirectX Version DirectX 11 DirectX 11.0
OpenGL Version OpenGL 4.1 OpenGL 4.2

Memory Bandwidth: Bandwidth is the maximum amount of data (measured in megabytes per second) that can be transferred across the external memory interface in a second. The number is calculated by multiplying the interface width by its memory speed. If the card has DDR memory, it should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be processed in one second. This figure is worked out by multiplying the total texture units of the card by the core speed of the chip. The better the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics chip can possibly write to its local memory per second - measured in millions of pixels per second. The number is calculated by multiplying the number of Raster Operations Pipelines by the the card's clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate is also dependant on many other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]