Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GT 640 DDR3 vs GeForce GTX 460

Intro

The GeForce GT 640 DDR3 makes use of a 28 nm design. nVidia has set the core speed at 900 MHz. The DDR3 memory works at a speed of 1782 MHz on this particular card. It features 384 SPUs as well as 32 TAUs and 16 Rasterization Operator Units.

Compare that to the GeForce GTX 460, which has GPU clock speed of 675 MHz, and 768 MB of GDDR5 memory running at 900 MHz through a 192-bit bus. It also is comprised of 336 SPUs, 56 Texture Address Units, and 24 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 640 DDR3 65 Watts
GeForce GTX 460 150 Watts
Difference: 85 Watts (131%)

Memory Bandwidth

In theory, the GeForce GTX 460 should be 52% quicker than the GeForce GT 640 DDR3 in general, due to its higher data rate. (explain)

GeForce GTX 460 86400 MB/sec
GeForce GT 640 DDR3 57024 MB/sec
Difference: 29376 (52%)

Texel Rate

The GeForce GTX 460 should be quite a bit (about 31%) more effective at AF than the GeForce GT 640 DDR3. (explain)

GeForce GTX 460 37800 Mtexels/sec
GeForce GT 640 DDR3 28800 Mtexels/sec
Difference: 9000 (31%)

Pixel Rate

The GeForce GTX 460 should be a small bit (more or less 13%) more effective at FSAA than the GeForce GT 640 DDR3, and will be capable of handling higher screen resolutions without slowing down too much. (explain)

GeForce GTX 460 16200 Mpixels/sec
GeForce GT 640 DDR3 14400 Mpixels/sec
Difference: 1800 (13%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 640 DDR3

Amazon.com

GeForce GTX 460

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 640 DDR3 GeForce GTX 460
Manufacturer nVidia nVidia
Year June 2012 July 2010
Code Name GK107 GF104
Memory 2048 MB 768 MB
Core Speed 900 MHz 675 MHz
Memory Speed 3564 MHz 3600 MHz
Power (Max TDP) 65 watts 150 watts
Bandwidth 57024 MB/sec 86400 MB/sec
Texel Rate 28800 Mtexels/sec 37800 Mtexels/sec
Pixel Rate 14400 Mpixels/sec 16200 Mpixels/sec
Unified Shaders 384 336
Texture Mapping Units 32 56
Render Output Units 16 24
Bus Type DDR3 GDDR5
Bus Width 128-bit 192-bit
Fab Process 28 nm 40 nm
Transistors 1300 million 1950 million
Bus PCIe 3.0 x16 PCIe x16
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.2 OpenGL 4.1

Memory Bandwidth: Bandwidth is the maximum amount of information (counted in megabytes per second) that can be transported over the external memory interface in one second. The number is calculated by multiplying the card's interface width by its memory speed. If it uses DDR memory, it should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied per second. This number is worked out by multiplying the total texture units of the card by the core clock speed of the chip. The better this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card could possibly write to the local memory in one second - measured in millions of pixels per second. The figure is calculated by multiplying the number of Raster Operations Pipelines by the the core clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate is also dependant on lots of other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]