Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce GT 640 DDR3 vs GeForce GTX 460

Intro

The GeForce GT 640 DDR3 comes with a core clock speed of 900 MHz and a DDR3 memory speed of 1782 MHz. It also features a 128-bit memory bus, and uses a 28 nm design. It is comprised of 384 SPUs, 32 Texture Address Units, and 16 ROPs.

Compare all of that to the GeForce GTX 460, which uses a 40 nm design. nVidia has set the core speed at 675 MHz. The GDDR5 memory works at a frequency of 900 MHz on this specific card. It features 336 SPUs as well as 56 Texture Address Units and 24 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 640 DDR3 65 Watts
GeForce GTX 460 150 Watts
Difference: 85 Watts (131%)

Memory Bandwidth

The GeForce GTX 460 should theoretically be quite a bit faster than the GeForce GT 640 DDR3 in general. (explain)

GeForce GTX 460 86400 MB/sec
GeForce GT 640 DDR3 57024 MB/sec
Difference: 29376 (52%)

Texel Rate

The GeForce GTX 460 is much (about 31%) more effective at AF than the GeForce GT 640 DDR3. (explain)

GeForce GTX 460 37800 Mtexels/sec
GeForce GT 640 DDR3 28800 Mtexels/sec
Difference: 9000 (31%)

Pixel Rate

The GeForce GTX 460 should be a bit (about 13%) better at FSAA than the GeForce GT 640 DDR3, and also will be capable of handling higher screen resolutions more effectively. (explain)

GeForce GTX 460 16200 Mpixels/sec
GeForce GT 640 DDR3 14400 Mpixels/sec
Difference: 1800 (13%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GT 640 DDR3

Amazon.com

GeForce GTX 460

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GT 640 DDR3 GeForce GTX 460
Manufacturer nVidia nVidia
Year June 2012 July 2010
Code Name GK107 GF104
Memory 2048 MB 768 MB
Core Speed 900 MHz 675 MHz
Memory Speed 3564 MHz 3600 MHz
Power (Max TDP) 65 watts 150 watts
Bandwidth 57024 MB/sec 86400 MB/sec
Texel Rate 28800 Mtexels/sec 37800 Mtexels/sec
Pixel Rate 14400 Mpixels/sec 16200 Mpixels/sec
Unified Shaders 384 336
Texture Mapping Units 32 56
Render Output Units 16 24
Bus Type DDR3 GDDR5
Bus Width 128-bit 192-bit
Fab Process 28 nm 40 nm
Transistors 1300 million 1950 million
Bus PCIe 3.0 x16 PCIe x16
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.2 OpenGL 4.1

Memory Bandwidth: Memory bandwidth is the largest amount of information (measured in megabytes per second) that can be transported past the external memory interface within a second. It's calculated by multiplying the card's interface width by its memory clock speed. If it uses DDR RAM, it should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are processed per second. This figure is worked out by multiplying the total texture units by the core speed of the chip. The better the texel rate, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card can possibly write to the local memory per second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the amount of ROPs by the the card's clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate is also dependant on quite a few other factors, especially the memory bandwidth of the card - the lower the bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]