Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GT 640 DDR3 vs GeForce GTX 460

Intro

The GeForce GT 640 DDR3 comes with a GPU core clock speed of 900 MHz, and the 2048 MB of DDR3 RAM is set to run at 1782 MHz through a 128-bit bus. It also is made up of 384 Stream Processors, 32 TAUs, and 16 ROPs.

Compare those specs to the GeForce GTX 460, which makes use of a 40 nm design. nVidia has clocked the core frequency at 675 MHz. The GDDR5 memory is set to run at a frequency of 900 MHz on this particular model. It features 336 SPUs along with 56 Texture Address Units and 24 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce GT 640 DDR3 65 Watts
GeForce GTX 460 150 Watts
Difference: 85 Watts (131%)

Memory Bandwidth

Performance-wise, the GeForce GTX 460 should in theory be much superior to the GeForce GT 640 DDR3 in general. (explain)

GeForce GTX 460 86400 MB/sec
GeForce GT 640 DDR3 57024 MB/sec
Difference: 29376 (52%)

Texel Rate

The GeForce GTX 460 will be a lot (approximately 31%) more effective at AF than the GeForce GT 640 DDR3. (explain)

GeForce GTX 460 37800 Mtexels/sec
GeForce GT 640 DDR3 28800 Mtexels/sec
Difference: 9000 (31%)

Pixel Rate

If using a high screen resolution is important to you, then the GeForce GTX 460 is superior to the GeForce GT 640 DDR3, but it probably won't make a huge difference. (explain)

GeForce GTX 460 16200 Mpixels/sec
GeForce GT 640 DDR3 14400 Mpixels/sec
Difference: 1800 (13%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

GeForce GT 640 DDR3

Amazon.com

Other US-based stores

GeForce GTX 460

Amazon.com

Other US-based stores

Specifications

Model GeForce GT 640 DDR3 GeForce GTX 460
Manufacturer nVidia nVidia
Year June 2012 July 2010
Code Name GK107 GF104
Fab Process 28 nm 40 nm
Bus PCIe 3.0 x16 PCIe x16
Memory 2048 MB 768 MB
Core Speed 900 MHz 675 MHz
Shader Speed 900 MHz 1350 MHz
Memory Speed 1782 MHz (3564 MHz effective) 900 MHz (3600 MHz effective)
Unified Shaders 384 336
Texture Mapping Units 32 56
Render Output Units 16 24
Bus Type DDR3 GDDR5
Bus Width 128-bit 192-bit
DirectX Version DirectX 11.1 DirectX 11
OpenGL Version OpenGL 4.2 OpenGL 4.1
Power (Max TDP) 65 watts 150 watts
Shader Model 5.0 5.0
Bandwidth 57024 MB/sec 86400 MB/sec
Texel Rate 28800 Mtexels/sec 37800 Mtexels/sec
Pixel Rate 14400 Mpixels/sec 16200 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of data (counted in megabytes per second) that can be moved past the external memory interface in a second. It's worked out by multiplying the card's bus width by its memory speed. In the case of DDR RAM, it must be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied per second. This figure is calculated by multiplying the total number of texture units of the card by the core clock speed of the chip. The higher the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip could possibly record to the local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of colour ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate also depends on quite a few other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree