Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

Geforce GTX 670 vs Radeon HD 6870


The Geforce GTX 670 features core clock speeds of 915 MHz on the GPU, and 1500 MHz on the 2048 MB of GDDR5 RAM. It features 1344 SPUs along with 112 TAUs and 32 Rasterization Operator Units.

Compare those specifications to the Radeon HD 6870, which features GPU core speed of 900 MHz, and 1024 MB of GDDR5 RAM set to run at 1050 MHz through a 256-bit bus. It also is made up of 1120 SPUs, 56 TAUs, and 32 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6870 151 Watts
Geforce GTX 670 170 Watts
Difference: 19 Watts (13%)

Memory Bandwidth

As far as performance goes, the Geforce GTX 670 should in theory be quite a bit better than the Radeon HD 6870 in general. (explain)

Geforce GTX 670 192000 MB/sec
Radeon HD 6870 134400 MB/sec
Difference: 57600 (43%)

Texel Rate

The Geforce GTX 670 should be much (approximately 103%) faster with regards to anisotropic filtering than the Radeon HD 6870. (explain)

Geforce GTX 670 102480 Mtexels/sec
Radeon HD 6870 50400 Mtexels/sec
Difference: 52080 (103%)

Pixel Rate

The Geforce GTX 670 will be a little bit (about 2%) better at full screen anti-aliasing than the Radeon HD 6870, and will be able to handle higher resolutions while still performing well. (explain)

Geforce GTX 670 29280 Mpixels/sec
Radeon HD 6870 28800 Mpixels/sec
Difference: 480 (2%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

Geforce GTX 670

Radeon HD 6870

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model Geforce GTX 670 Radeon HD 6870
Manufacturer nVidia AMD
Year May 2012 October 2010
Code Name GK104 Barts XT
Memory 2048 MB 1024 MB
Core Speed 915 MHz 900 MHz
Memory Speed 6000 MHz 4200 MHz
Power (Max TDP) 170 watts 151 watts
Bandwidth 192000 MB/sec 134400 MB/sec
Texel Rate 102480 Mtexels/sec 50400 Mtexels/sec
Pixel Rate 29280 Mpixels/sec 28800 Mpixels/sec
Unified Shaders 1344 1120
Texture Mapping Units 112 56
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
Fab Process 28 nm 40 nm
Transistors 3540 million 1700 million
Bus PCIe 3.0 x16 PCIe x16
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.2 OpenGL 4.1

Memory Bandwidth: Memory bandwidth is the max amount of information (counted in MB per second) that can be transferred past the external memory interface in one second. It is calculated by multiplying the card's interface width by its memory clock speed. In the case of DDR type RAM, it must be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The better the memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied per second. This number is calculated by multiplying the total number of texture units by the core clock speed of the chip. The better the texel rate, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics chip can possibly write to its local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of Render Output Units by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel output rate is also dependant on many other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield