Join Us On Facebook

Compare any two graphics cards:
VS

Geforce GTX 670 vs Radeon HD 6870

Intro

The Geforce GTX 670 has a GPU core speed of 915 MHz, and the 2048 MB of GDDR5 memory runs at 1500 MHz through a 256-bit bus. It also is made up of 1344 Stream Processors, 112 TAUs, and 32 Raster Operation Units.

Compare all that to the Radeon HD 6870, which has a core clock frequency of 900 MHz and a GDDR5 memory speed of 1050 MHz. It also makes use of a 256-bit memory bus, and makes use of a 40 nm design. It is made up of 1120 SPUs, 56 Texture Address Units, and 32 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6870 151 Watts
Geforce GTX 670 170 Watts
Difference: 19 Watts (13%)

Memory Bandwidth

The Geforce GTX 670 should theoretically be a lot faster than the Radeon HD 6870 overall. (explain)

Geforce GTX 670 192000 MB/sec
Radeon HD 6870 134400 MB/sec
Difference: 57600 (43%)

Texel Rate

The Geforce GTX 670 should be much (about 103%) more effective at anisotropic filtering than the Radeon HD 6870. (explain)

Geforce GTX 670 102480 Mtexels/sec
Radeon HD 6870 50400 Mtexels/sec
Difference: 52080 (103%)

Pixel Rate

The Geforce GTX 670 should be a bit (about 2%) more effective at AA than the Radeon HD 6870, and will be capable of handling higher screen resolutions without slowing down too much. (explain)

Geforce GTX 670 29280 Mpixels/sec
Radeon HD 6870 28800 Mpixels/sec
Difference: 480 (2%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

Geforce GTX 670

Amazon.com

Other US-based stores

Radeon HD 6870

Amazon.com

Other US-based stores

Specifications

Model Geforce GTX 670 Radeon HD 6870
Manufacturer nVidia ATi
Year May 2012 October 2010
Code Name GK104 Barts XT
Fab Process 28 nm 40 nm
Bus PCIe 3.0 x16 PCIe x16
Memory 2048 MB 1024 MB
Core Speed 915 MHz 900 MHz
Shader Speed 915 MHz (N/A) MHz
Memory Speed 1500 MHz (6000 MHz effective) 1050 MHz (4200 MHz effective)
Unified Shaders 1344 1120
Texture Mapping Units 112 56
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
DirectX Version DirectX 11.1 DirectX 11
OpenGL Version OpenGL 4.2 OpenGL 4.1
Power (Max TDP) 170 watts 151 watts
Shader Model 5.0 5.0
Bandwidth 192000 MB/sec 134400 MB/sec
Texel Rate 102480 Mtexels/sec 50400 Mtexels/sec
Pixel Rate 29280 Mpixels/sec 28800 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of information (in units of megabytes per second) that can be transferred across the external memory interface in one second. The number is worked out by multiplying the card's bus width by the speed of its memory. If the card has DDR type memory, it should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The better the bandwidth is, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed per second. This number is worked out by multiplying the total amount of texture units by the core speed of the chip. The higher this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in a second.

Pixel Rate: Pixel rate is the maximum number of pixels the video card could possibly write to its local memory in one second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of Render Output Units by the clock speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel output rate also depends on lots of other factors, especially the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree