Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

Geforce GTX 670 vs Radeon HD 6870

Intro

The Geforce GTX 670 uses a 28 nm design. nVidia has clocked the core frequency at 915 MHz. The GDDR5 memory is set to run at a speed of 1500 MHz on this model. It features 1344 SPUs along with 112 TAUs and 32 Rasterization Operator Units.

Compare all of that to the Radeon HD 6870, which comes with core clock speeds of 900 MHz on the GPU, and 1050 MHz on the 1024 MB of GDDR5 memory. It features 1120 SPUs as well as 56 Texture Address Units and 32 ROPs.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6870 151 Watts
Geforce GTX 670 170 Watts
Difference: 19 Watts (13%)

Memory Bandwidth

In theory, the Geforce GTX 670 should be 43% faster than the Radeon HD 6870 overall, because of its higher data rate. (explain)

Geforce GTX 670 192000 MB/sec
Radeon HD 6870 134400 MB/sec
Difference: 57600 (43%)

Texel Rate

The Geforce GTX 670 will be quite a bit (about 103%) faster with regards to texture filtering than the Radeon HD 6870. (explain)

Geforce GTX 670 102480 Mtexels/sec
Radeon HD 6870 50400 Mtexels/sec
Difference: 52080 (103%)

Pixel Rate

If using a high screen resolution is important to you, then the Geforce GTX 670 is the winner, not by a very large margin though. (explain)

Geforce GTX 670 29280 Mpixels/sec
Radeon HD 6870 28800 Mpixels/sec
Difference: 480 (2%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

Geforce GTX 670

Amazon.com

Radeon HD 6870

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model Geforce GTX 670 Radeon HD 6870
Manufacturer nVidia AMD
Year May 2012 October 2010
Code Name GK104 Barts XT
Memory 2048 MB 1024 MB
Core Speed 915 MHz 900 MHz
Memory Speed 6000 MHz 4200 MHz
Power (Max TDP) 170 watts 151 watts
Bandwidth 192000 MB/sec 134400 MB/sec
Texel Rate 102480 Mtexels/sec 50400 Mtexels/sec
Pixel Rate 29280 Mpixels/sec 28800 Mpixels/sec
Unified Shaders 1344 1120
Texture Mapping Units 112 56
Render Output Units 32 32
Bus Type GDDR5 GDDR5
Bus Width 256-bit 256-bit
Fab Process 28 nm 40 nm
Transistors 3540 million 1700 million
Bus PCIe 3.0 x16 PCIe x16
DirectX Version DirectX 11.0 DirectX 11
OpenGL Version OpenGL 4.2 OpenGL 4.1

Memory Bandwidth: Bandwidth is the maximum amount of information (counted in megabytes per second) that can be transferred past the external memory interface in one second. It is worked out by multiplying the interface width by the speed of its memory. If the card has DDR memory, it should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The higher the bandwidth is, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied in one second. This is worked out by multiplying the total texture units of the card by the core clock speed of the chip. The better this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the video card can possibly record to the local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of ROPs by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel rate also depends on many other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]