Join Us On Facebook

Compare any two graphics cards:
VS

Radeon HD 4650 1GB vs Radeon HD 7750

Intro

The Radeon HD 4650 1GB makes use of a 55 nm design. AMD has clocked the core frequency at 600 MHz. The GDDR3 memory works at a speed of 700 MHz on this specific model. It features 320(64x5) SPUs along with 32 Texture Address Units and 8 Rasterization Operator Units.

Compare that to the Radeon HD 7750, which has clock speeds of 800 MHz on the GPU, and 1125 MHz on the 1024 MB of GDDR5 memory. It features 512 SPUs as well as 32 TAUs and 16 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Both cards have the same power consumption.

Memory Bandwidth

In theory, the Radeon HD 7750 is 221% quicker than the Radeon HD 4650 1GB in general, due to its higher data rate. (explain)

Radeon HD 7750 72000 MB/sec
Radeon HD 4650 1GB 22400 MB/sec
Difference: 49600 (221%)

Texel Rate

The Radeon HD 7750 will be a lot (about 33%) better at AF than the Radeon HD 4650 1GB. (explain)

Radeon HD 7750 25600 Mtexels/sec
Radeon HD 4650 1GB 19200 Mtexels/sec
Difference: 6400 (33%)

Pixel Rate

The Radeon HD 7750 should be much (approximately 167%) better at full screen anti-aliasing than the Radeon HD 4650 1GB, and also will be able to handle higher resolutions while still performing well. (explain)

Radeon HD 7750 12800 Mpixels/sec
Radeon HD 4650 1GB 4800 Mpixels/sec
Difference: 8000 (167%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Radeon HD 4650 1GB

Amazon.com

Radeon HD 7750

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model Radeon HD 4650 1GB Radeon HD 7750
Manufacturer AMD AMD
Year Sep 10, 2008 February 2012
Code Name RV730 PRO Cape Verde Pro
Fab Process 55 nm 28 nm
Bus PCIe 2.0 x16, AGP 8x PCIe 3.0 x16
Memory 1024 MB 1024 MB
Core Speed 600 MHz 800 MHz
Shader Speed N/A MHz (N/A) MHz
Memory Speed 700 MHz (1400 MHz effective) 1125 MHz (4500 MHz effective)
Unified Shaders 320(64x5) 512
Texture Mapping Units 32 32
Render Output Units 8 16
Bus Type GDDR3 GDDR5
Bus Width 128-bit 128-bit
DirectX Version DirectX 10.1 DirectX 11.1
OpenGL Version OpenGL 3.0 OpenGL 4.2
Power (Max TDP) 55 watts 55 watts
Shader Model 4.1 5.0
Bandwidth 22400 MB/sec 72000 MB/sec
Texel Rate 19200 Mtexels/sec 25600 Mtexels/sec
Pixel Rate 4800 Mpixels/sec 12800 Mpixels/sec

Memory Bandwidth: Bandwidth is the maximum amount of data (measured in MB per second) that can be transported across the external memory interface in a second. It is worked out by multiplying the card's interface width by the speed of its memory. If it uses DDR type memory, the result should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are processed per second. This is calculated by multiplying the total amount of texture units of the card by the core clock speed of the chip. The better this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels in one second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics chip could possibly record to its local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of colour ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on many other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree