Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

Radeon HD 4650 512MB vs Radeon HD 7750

Intro

The Radeon HD 4650 512MB comes with a GPU clock speed of 600 MHz, and the 512 MB of DDR2 RAM is set to run at 500 MHz through a 128-bit bus. It also is made up of 320(64x5) SPUs, 32 Texture Address Units, and 8 Raster Operation Units.

Compare those specifications to the Radeon HD 7750, which features a core clock speed of 800 MHz and a GDDR5 memory frequency of 1125 MHz. It also makes use of a 128-bit bus, and makes use of a 28 nm design. It features 512 SPUs, 32 TAUs, and 16 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Both cards have the same power consumption.

Memory Bandwidth

The Radeon HD 7750 should in theory perform quite a bit faster than the Radeon HD 4650 512MB in general. (explain)

Radeon HD 7750 72000 MB/sec
Radeon HD 4650 512MB 16000 MB/sec
Difference: 56000 (350%)

Texel Rate

The Radeon HD 7750 should be much (approximately 33%) faster with regards to AF than the Radeon HD 4650 512MB. (explain)

Radeon HD 7750 25600 Mtexels/sec
Radeon HD 4650 512MB 19200 Mtexels/sec
Difference: 6400 (33%)

Pixel Rate

The Radeon HD 7750 is a lot (more or less 167%) more effective at FSAA than the Radeon HD 4650 512MB, and also should be capable of handling higher screen resolutions while still performing well. (explain)

Radeon HD 7750 12800 Mpixels/sec
Radeon HD 4650 512MB 4800 Mpixels/sec
Difference: 8000 (167%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

Radeon HD 4650 512MB

Amazon.com

Radeon HD 7750

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model Radeon HD 4650 512MB Radeon HD 7750
Manufacturer AMD AMD
Year Sep 10, 2008 February 2012
Code Name RV730 PRO Cape Verde Pro
Memory 512 MB 1024 MB
Core Speed 600 MHz 800 MHz
Memory Speed 1000 MHz 4500 MHz
Power (Max TDP) 55 watts 55 watts
Bandwidth 16000 MB/sec 72000 MB/sec
Texel Rate 19200 Mtexels/sec 25600 Mtexels/sec
Pixel Rate 4800 Mpixels/sec 12800 Mpixels/sec
Unified Shaders 320(64x5) 512
Texture Mapping Units 32 32
Render Output Units 8 16
Bus Type DDR2 GDDR5
Bus Width 128-bit 128-bit
Fab Process 55 nm 28 nm
Transistors 514 million 1500 million
Bus PCIe 2.0 x16, AGP 8x PCIe 3.0 x16
DirectX Version DirectX 10.1 DirectX 11.1
OpenGL Version OpenGL 3.0 OpenGL 4.2

Memory Bandwidth: Memory bandwidth is the maximum amount of information (in units of megabytes per second) that can be transported over the external memory interface in one second. It is worked out by multiplying the bus width by its memory speed. In the case of DDR memory, the result should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied in one second. This number is worked out by multiplying the total number of texture units by the core clock speed of the chip. The better this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card could possibly record to the local memory per second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of Raster Operations Pipelines by the the core clock speed. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel fill rate also depends on quite a few other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]