Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 580 vs Radeon HD 7750

Intro

The GeForce GTX 580 comes with a clock speed of 772 MHz and a GDDR5 memory speed of 1002 MHz. It also features a 384-bit memory bus, and makes use of a 40 nm design. It features 512 SPUs, 64 TAUs, and 48 Raster Operation Units.

Compare all of that to the Radeon HD 7750, which features a GPU core clock speed of 800 MHz, and 1024 MB of GDDR5 memory set to run at 1125 MHz through a 128-bit bus. It also is made up of 512 SPUs, 32 Texture Address Units, and 16 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7750 55 Watts
GeForce GTX 580 244 Watts
Difference: 189 Watts (344%)

Memory Bandwidth

Theoretically, the GeForce GTX 580 should be a lot faster than the Radeon HD 7750 overall. (explain)

GeForce GTX 580 192384 MB/sec
Radeon HD 7750 72000 MB/sec
Difference: 120384 (167%)

Texel Rate

The GeForce GTX 580 will be much (about 93%) faster with regards to texture filtering than the Radeon HD 7750. (explain)

GeForce GTX 580 49408 Mtexels/sec
Radeon HD 7750 25600 Mtexels/sec
Difference: 23808 (93%)

Pixel Rate

If using lots of anti-aliasing is important to you, then the GeForce GTX 580 is a better choice, by far. (explain)

GeForce GTX 580 37056 Mpixels/sec
Radeon HD 7750 12800 Mpixels/sec
Difference: 24256 (190%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 580

Amazon.com

Radeon HD 7750

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 580 Radeon HD 7750
Manufacturer nVidia AMD
Year November 2010 February 2012
Code Name GF110 Cape Verde Pro
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1536 MB 1024 MB
Core Speed 772 MHz 800 MHz
Shader Speed 1544 MHz (N/A) MHz
Memory Speed 1002 MHz (4008 MHz effective) 1125 MHz (4500 MHz effective)
Unified Shaders 512 512
Texture Mapping Units 64 32
Render Output Units 48 16
Bus Type GDDR5 GDDR5
Bus Width 384-bit 128-bit
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 4.1 OpenGL 4.2
Power (Max TDP) 244 watts 55 watts
Shader Model 5.0 5.0
Bandwidth 192384 MB/sec 72000 MB/sec
Texel Rate 49408 Mtexels/sec 25600 Mtexels/sec
Pixel Rate 37056 Mpixels/sec 12800 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of data (measured in MB per second) that can be transported past the external memory interface in one second. It's calculated by multiplying the card's bus width by its memory clock speed. If the card has DDR type RAM, the result should be multiplied by 2 once again. If it uses DDR5, multiply by 4 instead. The better the bandwidth is, the faster the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be processed in one second. This is worked out by multiplying the total texture units by the core speed of the chip. The higher the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip could possibly record to the local memory in one second - measured in millions of pixels per second. The number is calculated by multiplying the amount of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate is also dependant on many other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing