Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 580 vs Radeon HD 7750

Intro

The GeForce GTX 580 makes use of a 40 nm design. nVidia has clocked the core frequency at 772 MHz. The GDDR5 memory runs at a speed of 1002 MHz on this specific card. It features 512 SPUs as well as 64 TAUs and 48 Rasterization Operator Units.

Compare those specifications to the Radeon HD 7750, which comes with a core clock speed of 800 MHz and a GDDR5 memory frequency of 1125 MHz. It also uses a 128-bit bus, and uses a 28 nm design. It features 512 SPUs, 32 TAUs, and 16 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 7750 55 Watts
GeForce GTX 580 244 Watts
Difference: 189 Watts (344%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 580 will be 167% quicker than the Radeon HD 7750 overall, because of its higher bandwidth. (explain)

GeForce GTX 580 192384 MB/sec
Radeon HD 7750 72000 MB/sec
Difference: 120384 (167%)

Texel Rate

The GeForce GTX 580 is much (about 93%) more effective at texture filtering than the Radeon HD 7750. (explain)

GeForce GTX 580 49408 Mtexels/sec
Radeon HD 7750 25600 Mtexels/sec
Difference: 23808 (93%)

Pixel Rate

If running with a high resolution is important to you, then the GeForce GTX 580 is superior to the Radeon HD 7750, by far. (explain)

GeForce GTX 580 37056 Mpixels/sec
Radeon HD 7750 12800 Mpixels/sec
Difference: 24256 (190%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

GeForce GTX 580

Amazon.com

Other US-based stores

Radeon HD 7750

Amazon.com

Other US-based stores

Specifications

Model GeForce GTX 580 Radeon HD 7750
Manufacturer nVidia ATi
Year November 2010 February 2012
Code Name GF110 Cape Verde Pro
Fab Process 40 nm 28 nm
Bus PCIe x16 PCIe 3.0 x16
Memory 1536 MB 1024 MB
Core Speed 772 MHz 800 MHz
Shader Speed 1544 MHz (N/A) MHz
Memory Speed 1002 MHz (4008 MHz effective) 1125 MHz (4500 MHz effective)
Unified Shaders 512 512
Texture Mapping Units 64 32
Render Output Units 48 16
Bus Type GDDR5 GDDR5
Bus Width 384-bit 128-bit
DirectX Version DirectX 11 DirectX 11.1
OpenGL Version OpenGL 4.1 OpenGL 4.2
Power (Max TDP) 244 watts 55 watts
Shader Model 5.0 5.0
Bandwidth 192384 MB/sec 72000 MB/sec
Texel Rate 49408 Mtexels/sec 25600 Mtexels/sec
Pixel Rate 37056 Mpixels/sec 12800 Mpixels/sec

Memory Bandwidth: Bandwidth is the max amount of information (measured in MB per second) that can be moved past the external memory interface in a second. It's calculated by multiplying the card's interface width by its memory clock speed. If it uses DDR type memory, it must be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied per second. This number is calculated by multiplying the total number of texture units of the card by the core clock speed of the chip. The higher the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed per second.

Pixel Rate: Pixel rate is the maximum amount of pixels the graphics card could possibly write to the local memory per second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of Render Output Units by the the core speed of the card. ROPs (Raster Operations Pipelines - also sometimes called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate is also dependant on many other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree