Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9800 GT 1GB vs Radeon HD 6570 (OEM) 2GB

Intro

The GeForce 9800 GT 1GB features a GPU core speed of 600 MHz, and the 1024 MB of GDDR3 RAM runs at 900 MHz through a 256-bit bus. It also features 112 Stream Processors, 56 Texture Address Units, and 16 ROPs.

Compare those specifications to the Radeon HD 6570 (OEM) 2GB, which has GPU core speed of 650 MHz, and 1024 MB of GDDR5 memory set to run at 1000 MHz through a 128-bit bus. It also features 480 SPUs, 24 TAUs, and 8 ROPs.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6570 (OEM) 2GB 50 Watts
GeForce 9800 GT 1GB 105 Watts
Difference: 55 Watts (110%)

Memory Bandwidth

Theoretically, the Radeon HD 6570 (OEM) 2GB should be a little bit faster than the GeForce 9800 GT 1GB overall. (explain)

Radeon HD 6570 (OEM) 2GB 64000 MB/sec
GeForce 9800 GT 1GB 57600 MB/sec
Difference: 6400 (11%)

Texel Rate

The GeForce 9800 GT 1GB is quite a bit (about 115%) better at texture filtering than the Radeon HD 6570 (OEM) 2GB. (explain)

GeForce 9800 GT 1GB 33600 Mtexels/sec
Radeon HD 6570 (OEM) 2GB 15600 Mtexels/sec
Difference: 18000 (115%)

Pixel Rate

If running with high levels of AA is important to you, then the GeForce 9800 GT 1GB is superior to the Radeon HD 6570 (OEM) 2GB, and very much so. (explain)

GeForce 9800 GT 1GB 9600 Mpixels/sec
Radeon HD 6570 (OEM) 2GB 5200 Mpixels/sec
Difference: 4400 (85%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce 9800 GT 1GB

Amazon.com

Radeon HD 6570 (OEM) 2GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce 9800 GT 1GB Radeon HD 6570 (OEM) 2GB
Manufacturer nVidia AMD
Year July 2008 February 2011
Code Name G92a/b Turks
Fab Process 65/55 nm 40 nm
Bus PCIe x16 2.0 PCIe 2.1 x16
Memory 1024 MB 1024 MB
Core Speed 600 MHz 650 MHz
Shader Speed 1500 MHz (N/A) MHz
Memory Speed 900 MHz (1800 MHz effective) 1000 MHz (4000 MHz effective)
Unified Shaders 112 480
Texture Mapping Units 56 24
Render Output Units 16 8
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1
Power (Max TDP) 105 watts 50 watts
Shader Model 4.0 5.0
Bandwidth 57600 MB/sec 64000 MB/sec
Texel Rate 33600 Mtexels/sec 15600 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 5200 Mpixels/sec

Memory Bandwidth: Bandwidth is the largest amount of data (in units of MB per second) that can be transferred past the external memory interface in one second. It is calculated by multiplying the interface width by its memory speed. If it uses DDR memory, the result should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the card's memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that are applied per second. This figure is calculated by multiplying the total number of texture units by the core speed of the chip. The higher this number, the better the video card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied in a second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip could possibly record to its local memory in one second - measured in millions of pixels per second. The number is worked out by multiplying the amount of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate is also dependant on many other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing