Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:
VS

GeForce 9800 GT 1GB vs Radeon HD 6570 (OEM) 2GB

Intro

The GeForce 9800 GT 1GB makes use of a 65/55 nm design. nVidia has set the core speed at 600 MHz. The GDDR3 RAM works at a speed of 900 MHz on this specific card. It features 112 SPUs along with 56 Texture Address Units and 16 Rasterization Operator Units.

Compare those specs to the Radeon HD 6570 (OEM) 2GB, which features GPU core speed of 650 MHz, and 1024 MB of GDDR5 memory running at 1000 MHz through a 128-bit bus. It also is comprised of 480 SPUs, 24 TAUs, and 8 Raster Operation Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6570 (OEM) 2GB 50 Watts
GeForce 9800 GT 1GB 105 Watts
Difference: 55 Watts (110%)

Memory Bandwidth

The Radeon HD 6570 (OEM) 2GB, in theory, should be a small bit faster than the GeForce 9800 GT 1GB overall. (explain)

Radeon HD 6570 (OEM) 2GB 64000 MB/sec
GeForce 9800 GT 1GB 57600 MB/sec
Difference: 6400 (11%)

Texel Rate

The GeForce 9800 GT 1GB is quite a bit (more or less 115%) faster with regards to texture filtering than the Radeon HD 6570 (OEM) 2GB. (explain)

GeForce 9800 GT 1GB 33600 Mtexels/sec
Radeon HD 6570 (OEM) 2GB 15600 Mtexels/sec
Difference: 18000 (115%)

Pixel Rate

The GeForce 9800 GT 1GB is quite a bit (about 85%) more effective at full screen anti-aliasing than the Radeon HD 6570 (OEM) 2GB, and capable of handling higher screen resolutions better. (explain)

GeForce 9800 GT 1GB 9600 Mpixels/sec
Radeon HD 6570 (OEM) 2GB 5200 Mpixels/sec
Difference: 4400 (85%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9800 GT 1GB

Amazon.com

Radeon HD 6570 (OEM) 2GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9800 GT 1GB Radeon HD 6570 (OEM) 2GB
Manufacturer nVidia AMD
Year July 2008 February 2011
Code Name G92a/b Turks
Memory 1024 MB 1024 MB
Core Speed 600 MHz 650 MHz
Memory Speed 1800 MHz 4000 MHz
Power (Max TDP) 105 watts 50 watts
Bandwidth 57600 MB/sec 64000 MB/sec
Texel Rate 33600 Mtexels/sec 15600 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 5200 Mpixels/sec
Unified Shaders 112 480
Texture Mapping Units 56 24
Render Output Units 16 8
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
Fab Process 65/55 nm 40 nm
Transistors 754 million 715 million
Bus PCIe x16 2.0 PCIe 2.1 x16
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1

Memory Bandwidth: Bandwidth is the maximum amount of data (counted in megabytes per second) that can be transferred past the external memory interface in a second. The number is calculated by multiplying the bus width by the speed of its memory. If it uses DDR memory, it should be multiplied by 2 again. If DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied per second. This figure is calculated by multiplying the total amount of texture units by the core clock speed of the chip. The higher the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the most pixels that the graphics chip could possibly write to the local memory in a second - measured in millions of pixels per second. Pixel rate is worked out by multiplying the number of ROPs by the the core clock speed. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for filling the screen with pixels (the image). The actual pixel rate also depends on lots of other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published. Required fields are marked *

*


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield


[X]
[X]