Join Us On Facebook

Compare any two graphics cards:
VS

GeForce 9800 GT 1GB vs Radeon HD 6570 (OEM) 2GB

Intro

The GeForce 9800 GT 1GB comes with core clock speeds of 600 MHz on the GPU, and 900 MHz on the 1024 MB of GDDR3 memory. It features 112 SPUs along with 56 TAUs and 16 ROPs.

Compare those specs to the Radeon HD 6570 (OEM) 2GB, which comes with a clock frequency of 650 MHz and a GDDR5 memory frequency of 1000 MHz. It also makes use of a 128-bit bus, and makes use of a 40 nm design. It features 480 SPUs, 24 Texture Address Units, and 8 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6570 (OEM) 2GB 50 Watts
GeForce 9800 GT 1GB 105 Watts
Difference: 55 Watts (110%)

Memory Bandwidth

In theory, the Radeon HD 6570 (OEM) 2GB is 11% quicker than the GeForce 9800 GT 1GB in general, because of its higher bandwidth. (explain)

Radeon HD 6570 (OEM) 2GB 64000 MB/sec
GeForce 9800 GT 1GB 57600 MB/sec
Difference: 6400 (11%)

Texel Rate

The GeForce 9800 GT 1GB will be much (about 115%) more effective at AF than the Radeon HD 6570 (OEM) 2GB. (explain)

GeForce 9800 GT 1GB 33600 Mtexels/sec
Radeon HD 6570 (OEM) 2GB 15600 Mtexels/sec
Difference: 18000 (115%)

Pixel Rate

If running with a high screen resolution is important to you, then the GeForce 9800 GT 1GB is a better choice, by far. (explain)

GeForce 9800 GT 1GB 9600 Mpixels/sec
Radeon HD 6570 (OEM) 2GB 5200 Mpixels/sec
Difference: 4400 (85%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Please note that the price comparisons are based on search keywords, and might not be the exact same card listed on this page. We have no control over the accuracy of their search results.

GeForce 9800 GT 1GB

Amazon.com

Other US-based stores

Radeon HD 6570 (OEM) 2GB

Amazon.com

Other US-based stores

Specifications

Model GeForce 9800 GT 1GB Radeon HD 6570 (OEM) 2GB
Manufacturer nVidia ATi
Year July 2008 February 2011
Code Name G92a/b Turks
Fab Process 65/55 nm 40 nm
Bus PCIe x16 2.0 PCIe 2.1 x16
Memory 1024 MB 1024 MB
Core Speed 600 MHz 650 MHz
Shader Speed 1500 MHz (N/A) MHz
Memory Speed 900 MHz (1800 MHz effective) 1000 MHz (4000 MHz effective)
Unified Shaders 112 480
Texture Mapping Units 56 24
Render Output Units 16 8
Bus Type GDDR3 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1
Power (Max TDP) 105 watts 50 watts
Shader Model 4.0 5.0
Bandwidth 57600 MB/sec 64000 MB/sec
Texel Rate 33600 Mtexels/sec 15600 Mtexels/sec
Pixel Rate 9600 Mpixels/sec 5200 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the largest amount of data (in units of megabytes per second) that can be transported across the external memory interface in one second. It's calculated by multiplying the interface width by its memory speed. In the case of DDR RAM, it must be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with anti-aliasing, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum texture map elements (texels) that can be applied per second. This number is worked out by multiplying the total number of texture units by the core speed of the chip. The higher this number, the better the card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum number of pixels that the graphics card could possibly write to the local memory per second - measured in millions of pixels per second. The figure is worked out by multiplying the amount of Raster Operations Pipelines by the the core clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate is also dependant on lots of other factors, most notably the memory bandwidth of the card - the lower the memory bandwidth is, the lower the potential to reach the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree