Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 560 Ti vs Radeon HD 6570 (OEM) 2GB

Intro

The GeForce GTX 560 Ti features a GPU core speed of 822 MHz, and the 1024 MB of GDDR5 memory is set to run at 1002 MHz through a 256-bit bus. It also is comprised of 384 Stream Processors, 64 Texture Address Units, and 32 Raster Operation Units.

Compare all that to the Radeon HD 6570 (OEM) 2GB, which comes with a GPU core clock speed of 650 MHz, and 1024 MB of GDDR5 RAM running at 1000 MHz through a 128-bit bus. It also is comprised of 480 SPUs, 24 Texture Address Units, and 8 Raster Operation Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6570 (OEM) 2GB 50 Watts
GeForce GTX 560 Ti 170 Watts
Difference: 120 Watts (240%)

Memory Bandwidth

In theory, the GeForce GTX 560 Ti is 100% quicker than the Radeon HD 6570 (OEM) 2GB overall, due to its higher bandwidth. (explain)

GeForce GTX 560 Ti 128256 MB/sec
Radeon HD 6570 (OEM) 2GB 64000 MB/sec
Difference: 64256 (100%)

Texel Rate

The GeForce GTX 560 Ti should be a lot (approximately 237%) more effective at AF than the Radeon HD 6570 (OEM) 2GB. (explain)

GeForce GTX 560 Ti 52608 Mtexels/sec
Radeon HD 6570 (OEM) 2GB 15600 Mtexels/sec
Difference: 37008 (237%)

Pixel Rate

If using high levels of AA is important to you, then the GeForce GTX 560 Ti is superior to the Radeon HD 6570 (OEM) 2GB, by far. (explain)

GeForce GTX 560 Ti 26304 Mpixels/sec
Radeon HD 6570 (OEM) 2GB 5200 Mpixels/sec
Difference: 21104 (406%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 560 Ti

Amazon.com

Radeon HD 6570 (OEM) 2GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 560 Ti Radeon HD 6570 (OEM) 2GB
Manufacturer nVidia AMD
Year January 2011 February 2011
Code Name GF114 Turks
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe 2.1 x16
Memory 1024 MB 1024 MB
Core Speed 822 MHz 650 MHz
Shader Speed 1645 MHz (N/A) MHz
Memory Speed 1002 MHz (4008 MHz effective) 1000 MHz (4000 MHz effective)
Unified Shaders 384 480
Texture Mapping Units 64 24
Render Output Units 32 8
Bus Type GDDR5 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 4.1
Power (Max TDP) 170 watts 50 watts
Shader Model 5.0 5.0
Bandwidth 128256 MB/sec 64000 MB/sec
Texel Rate 52608 Mtexels/sec 15600 Mtexels/sec
Pixel Rate 26304 Mpixels/sec 5200 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of information (measured in MB per second) that can be moved over the external memory interface in a second. The number is worked out by multiplying the card's interface width by the speed of its memory. If it uses DDR RAM, it should be multiplied by 2 once again. If it uses DDR5, multiply by ANOTHER 2x. The higher the card's memory bandwidth, the faster the card will be in general. It especially helps with anti-aliasing, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied in one second. This figure is worked out by multiplying the total amount of texture units of the card by the core speed of the chip. The better this number, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels per second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics chip could possibly record to the local memory in one second - measured in millions of pixels per second. The figure is calculated by multiplying the number of Raster Operations Pipelines by the the core speed of the card. ROPs (Raster Operations Pipelines - aka Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate also depends on quite a few other factors, most notably the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree