Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 560 Ti vs Radeon HD 6570 (OEM) 2GB

Intro

The GeForce GTX 560 Ti makes use of a 40 nm design. nVidia has clocked the core speed at 822 MHz. The GDDR5 RAM works at a frequency of 1002 MHz on this particular card. It features 384 SPUs along with 64 TAUs and 32 Rasterization Operator Units.

Compare those specs to the Radeon HD 6570 (OEM) 2GB, which comes with core speeds of 650 MHz on the GPU, and 1000 MHz on the 1024 MB of GDDR5 memory. It features 480 SPUs along with 24 TAUs and 8 Rasterization Operator Units.

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6570 (OEM) 2GB 50 Watts
GeForce GTX 560 Ti 170 Watts
Difference: 120 Watts (240%)

Memory Bandwidth

The GeForce GTX 560 Ti, in theory, should perform a lot faster than the Radeon HD 6570 (OEM) 2GB in general. (explain)

GeForce GTX 560 Ti 128256 MB/sec
Radeon HD 6570 (OEM) 2GB 64000 MB/sec
Difference: 64256 (100%)

Texel Rate

The GeForce GTX 560 Ti will be quite a bit (approximately 237%) better at texture filtering than the Radeon HD 6570 (OEM) 2GB. (explain)

GeForce GTX 560 Ti 52608 Mtexels/sec
Radeon HD 6570 (OEM) 2GB 15600 Mtexels/sec
Difference: 37008 (237%)

Pixel Rate

The GeForce GTX 560 Ti is much (about 406%) more effective at full screen anti-aliasing than the Radeon HD 6570 (OEM) 2GB, and also able to handle higher screen resolutions while still performing well. (explain)

GeForce GTX 560 Ti 26304 Mpixels/sec
Radeon HD 6570 (OEM) 2GB 5200 Mpixels/sec
Difference: 21104 (406%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

GeForce GTX 560 Ti

Amazon.com

Radeon HD 6570 (OEM) 2GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Model GeForce GTX 560 Ti Radeon HD 6570 (OEM) 2GB
Manufacturer nVidia AMD
Year January 2011 February 2011
Code Name GF114 Turks
Fab Process 40 nm 40 nm
Bus PCIe x16 PCIe 2.1 x16
Memory 1024 MB 1024 MB
Core Speed 822 MHz 650 MHz
Shader Speed 1645 MHz (N/A) MHz
Memory Speed 1002 MHz (4008 MHz effective) 1000 MHz (4000 MHz effective)
Unified Shaders 384 480
Texture Mapping Units 64 24
Render Output Units 32 8
Bus Type GDDR5 GDDR5
Bus Width 256-bit 128-bit
DirectX Version DirectX 11 DirectX 11
OpenGL Version OpenGL 4.1 OpenGL 4.1
Power (Max TDP) 170 watts 50 watts
Shader Model 5.0 5.0
Bandwidth 128256 MB/sec 64000 MB/sec
Texel Rate 52608 Mtexels/sec 15600 Mtexels/sec
Pixel Rate 26304 Mpixels/sec 5200 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the max amount of data (measured in megabytes per second) that can be moved over the external memory interface in a second. The number is calculated by multiplying the interface width by its memory clock speed. In the case of DDR memory, it must be multiplied by 2 again. If DDR5, multiply by 4 instead. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and higher screen resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that are applied in one second. This figure is calculated by multiplying the total texture units by the core speed of the chip. The better this number, the better the card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the most pixels that the graphics card can possibly record to the local memory in one second - measured in millions of pixels per second. The figure is calculated by multiplying the amount of Raster Operations Pipelines by the clock speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate is also dependant on lots of other factors, especially the memory bandwidth - the lower the memory bandwidth is, the lower the ability to get to the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Spam Protection by WP-SpamFree