Join Us On Facebook

Compare any two graphics cards:
VS

GeForce GTX 260 Core 216 vs Radeon HD 6450 (OEM) 1GB

Intro

The GeForce GTX 260 Core 216 features a clock speed of 576 MHz and a GDDR3 memory frequency of 999 MHz. It also features a 448-bit bus, and makes use of a 65 nm design. It is made up of 216 SPUs, 72 Texture Address Units, and 28 Raster Operation Units.

Compare all of that to the Radeon HD 6450 (OEM) 1GB, which uses a 40 nm design. AMD has clocked the core frequency at 750 MHz. The GDDR5 memory runs at a frequency of 900 MHz on this card. It features 160 SPUs along with 8 Texture Address Units and 4 ROPs.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

Radeon HD 6450 (OEM) 1GB 31 Watts
GeForce GTX 260 Core 216 202 Watts
Difference: 171 Watts (552%)

Memory Bandwidth

The GeForce GTX 260 Core 216 should theoretically perform much faster than the Radeon HD 6450 (OEM) 1GB in general. (explain)

GeForce GTX 260 Core 216 111888 MB/sec
Radeon HD 6450 (OEM) 1GB 28800 MB/sec
Difference: 83088 (289%)

Texel Rate

The GeForce GTX 260 Core 216 should be a lot (approximately 591%) faster with regards to texture filtering than the Radeon HD 6450 (OEM) 1GB. (explain)

GeForce GTX 260 Core 216 41472 Mtexels/sec
Radeon HD 6450 (OEM) 1GB 6000 Mtexels/sec
Difference: 35472 (591%)

Pixel Rate

If using lots of anti-aliasing is important to you, then the GeForce GTX 260 Core 216 is a better choice, by far. (explain)

GeForce GTX 260 Core 216 16128 Mpixels/sec
Radeon HD 6450 (OEM) 1GB 3000 Mpixels/sec
Difference: 13128 (438%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce GTX 260 Core 216

Amazon.com

Radeon HD 6450 (OEM) 1GB

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce GTX 260 Core 216 Radeon HD 6450 (OEM) 1GB
Manufacturer nVidia AMD
Year September 16, 2008 February 2011
Code Name G200 Caicos
Fab Process 65 nm 40 nm
Bus PCIe x16 2.0 PCIe 2.1 x16
Memory 896 MB 1024 MB
Core Speed 576 MHz 750 MHz
Shader Speed 1242 MHz (N/A) MHz
Memory Speed 999 MHz (1998 MHz effective) 900 MHz (3600 MHz effective)
Unified Shaders 216 160
Texture Mapping Units 72 8
Render Output Units 28 4
Bus Type GDDR3 GDDR5
Bus Width 448-bit 64-bit
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.1 OpenGL 4.1
Power (Max TDP) 202 watts 31 watts
Shader Model 4.0 5.0
Bandwidth 111888 MB/sec 28800 MB/sec
Texel Rate 41472 Mtexels/sec 6000 Mtexels/sec
Pixel Rate 16128 Mpixels/sec 3000 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of information (counted in MB per second) that can be moved past the external memory interface in a second. It is calculated by multiplying the interface width by its memory speed. In the case of DDR RAM, the result should be multiplied by 2 once again. If DDR5, multiply by 4 instead. The better the memory bandwidth, the better the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that are applied per second. This is calculated by multiplying the total texture units by the core speed of the chip. The better this number, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second.

Pixel Rate: Pixel rate is the most pixels the graphics card could possibly record to its local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of ROPs by the clock speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel output rate is also dependant on many other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to reach the maximum fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing