Compare any two graphics cards:
Radeon HD 7870 vs Radeon R9 Nano
IntroThe Radeon HD 7870 has core speeds of 1000 MHz on the GPU, and 1200 MHz on the 2048 MB of GDDR5 memory. It features 1280 SPUs as well as 80 TAUs and 32 ROPs.Compare those specifications to the Radeon R9 Nano, which uses a 28 nm design. AMD has set the core frequency at 1000 MHz. The HBM RAM runs at a frequency of 500 MHz on this card. It features 4096 SPUs as well as 256 Texture Address Units and 64 Rasterization Operator Units.
Display Graphs
BenchmarksThese are real-world performance benchmarks that were submitted by Hardware Compare users. The scores seen here are the average of all benchmarks submitted for each respective test and hardware.
3DMark Fire Strike Graphics Score
Zcash Mining Hash Rate
Ethereum Mining Hash Rate
Power Usage and Theoretical BenchmarksBoth cards have the same power consumption.Memory BandwidthTheoretically speaking, the Radeon R9 Nano will be 233% quicker than the Radeon HD 7870 overall, due to its higher bandwidth. (explain)
Texel RateThe Radeon R9 Nano is much (more or less 220%) more effective at anisotropic filtering than the Radeon HD 7870. (explain)
Pixel RateIf using high levels of AA is important to you, then the Radeon R9 Nano is the winner, by a large margin. (explain)
Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit. Price Comparison
Display Prices
Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though. Specifications
Display Specifications
Memory Bandwidth: Memory bandwidth is the max amount of data (in units of megabytes per second) that can be transported past the external memory interface in one second. It's worked out by multiplying the interface width by its memory speed. In the case of DDR type memory, the result should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The better the card's memory bandwidth, the faster the card will be in general. It especially helps with AA, High Dynamic Range and high resolutions. Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed per second. This number is calculated by multiplying the total number of texture units of the card by the core speed of the chip. The better this number, the better the video card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in one second. Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics card can possibly write to its local memory per second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of Raster Operations Pipelines by the the core clock speed. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel fill rate is also dependant on lots of other factors, most notably the memory bandwidth of the card - the lower the bandwidth is, the lower the potential to get to the max fill rate.
Display Prices
Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.
|
Comments
Be the first to leave a comment!