Submit Benchmarks!

Submit SSD Benchmark
Submit GPU Benchmark

Compare any two graphics cards:

GeForce 9600 GT 1GB vs GeForce GTX 550 Ti


The GeForce 9600 GT 1GB features core speeds of 650 MHz on the GPU, and 900 MHz on the 1024 MB of GDDR3 memory. It features 64 SPUs along with 32 Texture Address Units and 16 ROPs.

Compare all that to the GeForce GTX 550 Ti, which features core speeds of 900 MHz on the GPU, and 1026 MHz on the 1024 MB of GDDR5 RAM. It features 192 SPUs along with 32 Texture Address Units and 24 Rasterization Operator Units.

Display Graphs

Hide Graphs

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9600 GT 1GB 95 Watts
GeForce GTX 550 Ti 116 Watts
Difference: 21 Watts (22%)

Memory Bandwidth

Performance-wise, the GeForce GTX 550 Ti should in theory be quite a bit superior to the GeForce 9600 GT 1GB in general. (explain)

GeForce GTX 550 Ti 98496 MB/sec
GeForce 9600 GT 1GB 57600 MB/sec
Difference: 40896 (71%)

Texel Rate

The GeForce GTX 550 Ti should be quite a bit (more or less 38%) faster with regards to anisotropic filtering than the GeForce 9600 GT 1GB. (explain)

GeForce GTX 550 Ti 28800 Mtexels/sec
GeForce 9600 GT 1GB 20800 Mtexels/sec
Difference: 8000 (38%)

Pixel Rate

If running with high levels of AA is important to you, then the GeForce GTX 550 Ti is superior to the GeForce 9600 GT 1GB, by far. (explain)

GeForce GTX 550 Ti 21600 Mpixels/sec
GeForce 9600 GT 1GB 10400 Mpixels/sec
Difference: 11200 (108%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9600 GT 1GB

GeForce GTX 550 Ti

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.


Display Specifications

Hide Specifications

Model GeForce 9600 GT 1GB GeForce GTX 550 Ti
Manufacturer nVidia nVidia
Year Feb 2008 March 2011
Code Name G94a/b GF116
Memory 1024 MB 1024 MB
Core Speed 650 MHz 900 MHz
Memory Speed 1800 MHz 4104 MHz
Power (Max TDP) 95 watts 116 watts
Bandwidth 57600 MB/sec 98496 MB/sec
Texel Rate 20800 Mtexels/sec 28800 Mtexels/sec
Pixel Rate 10400 Mpixels/sec 21600 Mpixels/sec
Unified Shaders 64 192
Texture Mapping Units 32 32
Render Output Units 16 24
Bus Type GDDR3 GDDR5
Bus Width 256-bit 192-bit
Fab Process 65/55 nm 40 nm
Transistors 505 million 1170 million
Bus PCIe x16 2.0 PCIe 2.1 x16
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1

Memory Bandwidth: Memory bandwidth is the max amount of information (measured in megabytes per second) that can be transferred across the external memory interface in a second. It is calculated by multiplying the bus width by the speed of its memory. If it uses DDR RAM, it should be multiplied by 2 again. If it uses DDR5, multiply by 4 instead. The higher the card's memory bandwidth, the better the card will be in general. It especially helps with AA, HDR and higher screen resolutions.

Texel Rate: Texel rate is the maximum number of texture map elements (texels) that can be processed per second. This figure is worked out by multiplying the total number of texture units by the core clock speed of the chip. The higher the texel rate, the better the graphics card will be at handling texture filtering (anisotropic filtering - AF). It is measured in millions of texels processed in a second.

Pixel Rate: Pixel rate is the maximum amount of pixels that the graphics chip could possibly record to its local memory in one second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the amount of Render Output Units by the the core speed of the card. ROPs (Raster Operations Pipelines - also called Render Output Units) are responsible for drawing the pixels (image) on the screen. The actual pixel fill rate also depends on many other factors, especially the memory bandwidth - the lower the bandwidth is, the lower the ability to reach the max fill rate.


Be the first to leave a comment!

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WordPress Anti-Spam by WP-SpamShield