Compare any two graphics cards:
VS

GeForce 9600 GT 1GB vs GeForce GTX 550 Ti

Intro

The GeForce 9600 GT 1GB has a core clock speed of 650 MHz and a GDDR3 memory speed of 900 MHz. It also makes use of a 256-bit bus, and makes use of a 65/55 nm design. It is made up of 64 SPUs, 32 TAUs, and 16 Raster Operation Units.

Compare that to the GeForce GTX 550 Ti, which features core speeds of 900 MHz on the GPU, and 1026 MHz on the 1024 MB of GDDR5 RAM. It features 192 SPUs as well as 32 Texture Address Units and 24 Rasterization Operator Units.

Display Graphs

Hide Graphs

(No game benchmarks for this combination yet.)

Power Usage and Theoretical Benchmarks

Power Consumption (Max TDP)

GeForce 9600 GT 1GB 95 Watts
GeForce GTX 550 Ti 116 Watts
Difference: 21 Watts (22%)

Memory Bandwidth

Theoretically speaking, the GeForce GTX 550 Ti should be 71% faster than the GeForce 9600 GT 1GB overall, because of its higher bandwidth. (explain)

GeForce GTX 550 Ti 98496 MB/sec
GeForce 9600 GT 1GB 57600 MB/sec
Difference: 40896 (71%)

Texel Rate

The GeForce GTX 550 Ti should be a lot (about 38%) faster with regards to AF than the GeForce 9600 GT 1GB. (explain)

GeForce GTX 550 Ti 28800 Mtexels/sec
GeForce 9600 GT 1GB 20800 Mtexels/sec
Difference: 8000 (38%)

Pixel Rate

The GeForce GTX 550 Ti will be much (more or less 108%) better at anti-aliasing than the GeForce 9600 GT 1GB, and will be able to handle higher screen resolutions better. (explain)

GeForce GTX 550 Ti 21600 Mpixels/sec
GeForce 9600 GT 1GB 10400 Mpixels/sec
Difference: 11200 (108%)

Please note that the above 'benchmarks' are all just theoretical - the results were calculated based on the card's specifications, and real-world performance may (and probably will) vary at least a bit.

Price Comparison

Display Prices

Hide Prices

GeForce 9600 GT 1GB

Amazon.com

GeForce GTX 550 Ti

Amazon.com

Please note that the price comparisons are based on search keywords - sometimes it might show cards with very similar names that are not exactly the same as the one chosen in the comparison. We do try to filter out the wrong results as best we can, though.

Specifications

Display Specifications

Hide Specifications

Model GeForce 9600 GT 1GB GeForce GTX 550 Ti
Manufacturer nVidia nVidia
Year Feb 2008 March 2011
Code Name G94a/b GF116
Fab Process 65/55 nm 40 nm
Bus PCIe x16 2.0 PCIe 2.1 x16
Memory 1024 MB 1024 MB
Core Speed 650 MHz 900 MHz
Shader Speed 1625 MHz 1800 MHz
Memory Speed 1800 MHz 4104 MHz
Unified Shaders 64 192
Texture Mapping Units 32 32
Render Output Units 16 24
Bus Type GDDR3 GDDR5
Bus Width 256-bit 192-bit
DirectX Version DirectX 10 DirectX 11
OpenGL Version OpenGL 3.0 OpenGL 4.1
Power (Max TDP) 95 watts 116 watts
Shader Model 4.0 5.0
Bandwidth 57600 MB/sec 98496 MB/sec
Texel Rate 20800 Mtexels/sec 28800 Mtexels/sec
Pixel Rate 10400 Mpixels/sec 21600 Mpixels/sec

Memory Bandwidth: Memory bandwidth is the maximum amount of information (measured in megabytes per second) that can be transferred over the external memory interface in one second. The number is worked out by multiplying the interface width by its memory speed. If it uses DDR type memory, it should be multiplied by 2 once again. If DDR5, multiply by ANOTHER 2x. The higher the bandwidth is, the faster the card will be in general. It especially helps with AA, HDR and high resolutions.

Texel Rate: Texel rate is the maximum amount of texture map elements (texels) that can be applied per second. This number is calculated by multiplying the total number of texture units of the card by the core speed of the chip. The higher the texel rate, the better the graphics card will be at texture filtering (anisotropic filtering - AF). It is measured in millions of texels applied per second.

Pixel Rate: Pixel rate is the most pixels the video card can possibly record to its local memory in a second - measured in millions of pixels per second. Pixel rate is calculated by multiplying the number of Render Output Units by the clock speed of the card. ROPs (Raster Operations Pipelines - sometimes also referred to as Render Output Units) are responsible for outputting the pixels (image) to the screen. The actual pixel rate also depends on quite a few other factors, most notably the memory bandwidth - the lower the memory bandwidth is, the lower the potential to get to the max fill rate.

Comments

Be the first to leave a comment!

Your email address will not be published.


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

WP-SpamFree by Pole Position Marketing